PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Crossover sound

Unambiguous evidence for coherent phonons in superlattices

2014-02-06
(Press-News.org) Contact information: Lynn Yarris
lcyarris@lbl.gov
510-486-5375
DOE/Lawrence Berkeley National Laboratory
Crossover sound Unambiguous evidence for coherent phonons in superlattices

We all learn in high school science about the dual nature of light - that it exists as both waves and quantum particles called photons. It is this duality of light that enables the coherent transport of photons in lasers. Sound at the atomic-scale has the same dual nature, existing as both waves and quasi-particles known as phonons. Does this duality allow for phonon-based lasers? Some theorists say yes, but the point has been argued for years. Recently a large collaboration, in which Berkeley Lab scientists played a prominent role, provided the first "unambiguous demonstration" of the coherent transport of phonons.

Ramamoorthy Ramesh, a senior scientist with Berkeley Lab's Materials Sciences Division, was a co-leader with Arun Majumdar, a former Associated Laboratory director at Berkeley Lab and and currently VP for Energy at Google, of an experiment in which phonons underwent particle-to-wave crossovers in superlattices of perovskite oxides.

"Our observations open up new opportunities for studying the wave-like nature of phonons, particularly phonon interference effects," says Ramesh. "Such research should have potential applications in thermoelectrics and thermal management, and in the long run could help the development of phonon lasers."

Unlike elementary particles such as electrons and photons, whose wave nature and coherent properties are well-established, experimental demonstration of coherent wave-like properties of phonons has been limited. This is because phonons are not true particles, but the collective vibrations of atoms in a crystal lattice that can be quantized as if they were particles. However, understanding the coherent wave nature of phonons is of fundamental importance to thermoelectrics, materials that can convert heat into electricity, or electricity into heat, which represent a potentially huge source of clean, green energy.

"Lower thermal conductivity is one of the keys to improving the efficiency of thermoelectric materials and the key to thermal conductivity in semiconductors is phonon transport," Majumdar says. "Nanostructures such as superlattices are the ideal model systems for the study of phonon transport, particularly the wave-particle crossover, because the wavelength of the most relevant phonons are in the range of one to 10 nanometers."

Superlattices are artificial periodic structures consisting of two dissimilar semiconductors in alternating layers a few nanometers thick. For this demonstration, the collaboration synthesized high-quality superlattices of electrically insulating perovskite oxides on various single-crystal oxide substrates. Interface densities in these superlattices were systematically varied using two different epitaxial growth techniques. Thermal conductivity was measured as a function of interface density.

"Our results were in general agreement with theoretical predictions of crossover from incoherent particle-like to coherent wave-like phonon transport," Ramesh says. "We also found sufficient evidence to eliminate extraneous or spurious effects, which could have alternatively explained the observed thermal conductivity minimum in these superlattices."

Capitalizing on the wave behavior of phonons should enable new advances in new heat transfer applications, the collaborators say. Furthermore, perovskite superlattice-based heterostructures could also serve as basic building blocks for the development of lasers in which beams of coherent phonons rather than coherent photons are emitted. Phonon lasers could provide advanced ultrasound imaging or highly accurate measuring devices, among other possibilities.



INFORMATION:

Ramesh is a corresponding author of a Nature Materials paper describing this research titled "Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices." For a complete list of the co-authors go here

This research was primarily supported by U.S. Department of Energy's Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.



ELSE PRESS RELEASES FROM THIS DATE:

Grasshoppers are what they eat

2014-02-06
PUBLIC RELEASE DATE: 5-Feb-2014 [ | E-mail ] var addthis_pub="eurekalert"; var addthis_options = "favorites, delicious, digg, facebook, twitter, google, newsvine, reddit, slashdot, stumbleupon, buzz, more" Share Contact: Beth Parada apps@botany.org American Journal of Botany Grasshoppers are what they eat New method to extract plant DNA from grasshopper guts improves understanding of plant-insect interactions VIDEO: This is a demonstration of grasshopper ...

Heavy metal in the early cosmos

2014-02-06
Ab initio: "From the beginning." It's a term used in science to describe ...

New study finds early universe 'warmed up' later than previously believed

2014-02-06
A new study from Tel Aviv University reveals that black holes, formed from the first stars in our ...

Whales and human-related activities overlap in African waters

2014-02-06
Scientists with the Wildlife Conservation Society, Oregon State University, Stanford ...

Obesity treatment using stem cells is the topic of 2013's most-visited news release on EurekAlert!

2014-02-06
For the second year in a row, obesity research features prominently in the group of 10 most-visited news releases posted on EurekAlert! ...

Fruit fly microRNA research at Rutgers-Camden offers clues to aging process

2014-02-06
CAMDEN — Diseases like Alzheimer's and Huntington's are often associated with aging, but the biological link between the two is less certain. Researchers at Rutgers University–Camden ...

New evidence shows increase in obesity may be slowing, but not by much

2014-02-06
CHAMPAIGN, Ill. — In his 2014 State of the Union address, President Barack Obama referred to an August 2013 Centers for Disease Control and Prevention study that showed a ...

Monkeys that eat omega-3 rich diet show more developed brain networks

2014-02-06
PORTLAND, Ore. — Monkeys that ate a diet rich in omega-3 fatty acids had brains with highly connected ...

MD Anderson guides intelligent redesign of cancer care delivery model

2014-02-06
HOUSTON – How best to implement key recommendations recently identified ...

Durable end to AIDS will require HIV vaccine development

2014-02-06
WHAT: Broader global access to lifesaving antiretroviral therapies and wider ...

LAST 30 PRESS RELEASES:

First Editorial of 2026: Resisting AI slop

Joint ground- and space-based observations reveal Saturn-mass rogue planet

Inheritable genetic variant offers protection against blood cancer risk and progression

Pigs settled Pacific islands alongside early human voyagers

A Coral reef’s daily pulse reshapes microbes in surrounding waters

EAST Tokamak experiments exceed plasma density limit, offering new approach to fusion ignition

Groundbreaking discovery reveals Africa’s oldest cremation pyre and complex ritual practices

First breathing ‘lung-on-chip’ developed using genetically identical cells

How people moved pigs across the Pacific

Interaction of climate change and human activity and its impact on plant diversity in Qinghai-Tibet plateau

From addressing uncertainty to national strategy: an interpretation of Professor Lim Siong Guan’s views

Clinical trials on AI language model use in digestive healthcare

Scientists improve robotic visual–inertial trajectory localization accuracy using cross-modal interaction and selection techniques

Correlation between cancer cachexia and immune-related adverse events in HCC

Human adipose tissue: a new source for functional organoids

Metro lines double as freight highways during off-peak hours, Beijing study shows

Biomedical functions and applications of nanomaterials in tumor diagnosis and treatment: perspectives from ophthalmic oncology

3D imaging unveils how passivation improves perovskite solar cell performance

Enriching framework Al sites in 8-membered rings of Cu-SSZ-39 zeolite to enhance low-temperature ammonia selective catalytic reduction performance

AI-powered RNA drug development: a new frontier in therapeutics

Decoupling the HOR enhancement on PtRu: Dynamically matching interfacial water to reaction coordinates

Sulfur isn’t poisonous when it synergistically acts with phosphine in olefins hydroformylation

URI researchers uncover molecular mechanisms behind speciation in corals

Chitin based carbon aerogel offers a cleaner way to store thermal energy

Tracing hidden sources of nitrate pollution in rapidly changing rural urban landscapes

Viruses on plastic pollution may quietly accelerate the spread of antibiotic resistance

Three UH Rainbow Babies & Children’s faculty elected to prestigious American Pediatric Society

Tunnel resilience models unveiled to aid post-earthquake recovery

Satellite communication systems: the future of 5G/6G connectivity

Space computing power networks: a new frontier for satellite technologies

[Press-News.org] Crossover sound
Unambiguous evidence for coherent phonons in superlattices