(Press-News.org) DALLAS, March 16, 2014 — Sunlight plus a common titanium pigment might be the secret recipe for ridding pharmaceuticals, pesticides and other potentially harmful pollutants from drinking water. Scientists combined several high-tech components to make an easy-to-use water purifier that could
work with the world's most basic form of energy, sunlight, in a boon for water purification in rural areas or developing countries.
The talk was one of more than 10,000 presentations at the 247th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society, taking place here through Thursday.
Anne Morrissey, Ph.D., explained that the new technology could someday be incorporated into an easy-to-use consumer product that would remove these stubborn pollutants from drinking water as a final step after it has already been treated with conventional methods.
Her group at Dublin City University in Ireland started with a compound called titanium dioxide (TiO2), a powder used to whiten paints, paper, toothpaste, food and other products. With the right energy, TiO2 can also act as a catalyst — a molecule that encourages chemical reactions — breaking down unwanted compounds in drinking water like pesticides and pharmaceuticals. Morrissey explained that modifying current water treatment methods to get rid of these potentially harmful species can be costly and energy-intensive, and often, these modifications don't completely eliminate the pollutants.
But Morrissey said TiO2 is usually only activated by ultraviolet light, which is produced by special bulbs. To access titanium dioxide's properties with the sun's light, Morrissey and her group experimented with different shapes of TiO2 that would better absorb visible light. She found that nanotubes about 1,000 times thinner than a human hair were best, but they couldn't do it on their own.
That's why she turned to graphene, a material made of sheets of carbon just one atom thick. "Graphene is the magic material, but its use for water treatment hasn't been fully developed," she said. "It has great potential." Morrissey put the TiO2 nanotubes on these graphene sheets. Pollutants stuck to the surface of the graphene as they passed by, allowing TiO2 to get close enough to break them down.
Her research group successfully tested the system on diclofenac, an anti-inflammatory drug notorious for wiping out nearly an entire vulture population in India.
"We're looking at using the graphene composite in a cartridge for one-step drinking water treatment," said Morrissey. "You could just buy a cartridge off the shelf and plop it into the pipe where the drinking water comes into your house." The cartridge system would also ensure that the graphene stays immobilized and does its job without contaminating the clean water.
Morrissey noted, however, that the technology will never be strong enough to completely clean drinking water on its own. Rather, she sees it as a polishing step after traditional water treatment processes to mop up the most insidious pollutants.
That could be especially useful in her home country, where she said many rural communities use small water treatment systems that only supply a few dozen homes. Because they don't have the infrastructure that large-scale urban treatment plants do, she thinks that a cartridge that could clean with only the sun's energy could help make their water safer.
Ultimately, Morrissey said there are still many questions to answer before declaring her TiO2-graphene system a success. One of the biggest is making sure that when it breaks down pollutants, it is producing harmless byproducts. She also wants to make sure that the energy required for the system compares favorably to simply using TiO2 with ultraviolet light. But so far, she reported, her design seems to be easier to make and dispose of than other visible-light activated TiO2 purifiers.
INFORMATION:
A press conference on this topic will be held Monday, March 17, at 1 p.m. Central time in Room A122/A123 of the Dallas Convention Center. Reporters can attend in person or access live video of the event and ask questions at the ACS Ustream channel http://www.ustream.tv/channel/acslive.
The authors wish to acknowledge the financial support of the Marie Curie Initial Training Network funded by the EC FP7 People Programme; ATWARM (Advanced Technologies for Water Resource Management); Tyndall National Institute, Ireland, for their support through the SFI-funded National Access Programme (NAP407); and the Environmental Protection Agency STRIVE program.
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.
To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.
Note to journalists: Please report that this research was presented at a meeting of the American Chemical Society.
Follow us: Twitter | Facebook
Title
Using nanomaterials to remove emerging micro-pollutants from water
Abstract
There has been a growing awareness of the existence of micro-pollutants such as detergents, dyes, pesticides, herbicides and pharmaceuticals in the environment in recent years. At the same time, conventional water and wastewater treatments such as adsorption, ozonation, UV and bio-degradation can only partially remove these micro-pollutants from treated water. Semiconductor photocatalysis using titanium dioxide (TiO2) has also been very well researched due to the potential of complete degradation of organic compounds and the minimization of waste disposal and energy consumption. However, TiO2 also has limitations, not least the requirement for UV light, which impede its application in an industrial wastewater treatment process. To overcome the disadvantages of TiO2, different TiO2 nanostructures (nanoparticle, nanotube, nanowire and mesoporous beads) were modified in a series of experiments with i) activated carbon (Integrated Photocatalytic Adsorbents) and ii) with graphene to develop visible-light responsive TiO2-based photocatalysts. The effectiveness of the new composites was tested on a number of pharmaceuticals, including diclofenac, (which is now on the EU watch list), with graphene/TiO2nanotubes giving the best results. A graphene oxide sponge was also produced, which showed an exceptional adsorption capacity for the removal of a wide range of compounds (equilibrium reached in an hour) and with a higher efficiency than that of activated carbon.
High-tech materials purify water with sunlight
2014-03-16
ELSE PRESS RELEASES FROM THIS DATE:
Better-tasting reduced-fat desserts, dressings, sauces: Coming soon?
2014-03-16
DALLAS, March 16, 2014 — Adjusting the calcium level and acidity could be the key to developing new better-tasting, more eye-appealing and creamier reduced-fat sauces, desserts and salad dressings that could be on the market soon, researchers reported here today.
To date, a major problem with removing fat from these accompaniments is that in addition to reducing calories, it can negatively affect the flavor, appearance and texture, they said. But based on recent research it may not be too long before new, improved, lower-fat foods appear in grocery stores, the researchers ...
Tequila plant is possible sweetener for diabetics -- helps reduce blood sugar, weight
2014-03-16
DALLAS, March 16, 2014 — A sweetener created from the plant used to make tequila could lower blood glucose levels for the 26 million Americans and others worldwide who have type 2 diabetes and help them and the obese lose weight, researchers said here today.
The main reason it could be valuable, they explained, is that agavins, a natural form of sugar found in the agave plant, are non-digestible and can act as a dietary fiber, so they would not raise blood glucose. Their report was part of the 247th National Meeting of the American Chemical Society (ACS), the world's ...
The rush to rain
2014-03-16
RICHLAND, Wash. -- A new analysis of satellite data reveals a link between dust in North Africa and West Asia and stronger monsoons in India. The study shows that dust in the air absorbs sunlight west of India, warming the air and strengthening the winds carrying moisture eastward. This results in more monsoon rainfall about a week later in India. The results explain one way that dust can affect the climate, filling in previously unknown details about the Earth system.
The study also shows that natural airborne particles can influence rainfall in unexpected ways, with ...
Researchers: Northeast Greenland ice loss accelerating
2014-03-16
COLUMBUS, Ohio—An international team of scientists has discovered that the last remaining stable portion of the Greenland ice sheet is stable no more.
The finding, which will likely boost estimates of expected global sea level rise in the future, appears in the March 16 issue of the journal Nature Climate Change [DOI:10.1038/NCLIMATE2161].
The new result focuses on ice loss due to a major retreat of an outlet glacier connected to a long "river" of ice - known as an ice stream - that drains ice from the interior of the ice sheet. The Zachariae ice stream retreated about ...
Mercury's contraction much greater than thought
2014-03-16
Washington, D.C.—New global imaging and topographic data from MESSENGER* show that the innermost planet has contracted far more than previous estimates. The results are based on a global study of more than 5,900 geological landforms, such as curving cliff-like scarps and wrinkle ridges, that have resulted from the planet's contraction as Mercury cooled. The findings, published online March 16, 2014, in Nature Geoscience, are key to understanding the planet's thermal, tectonic, and volcanic history, and the structure of its unusually large metallic core.
Unlike Earth, ...
Thermal vision: Graphene light detector first to span infrared spectrum
2014-03-16
ANN ARBOR—The first room-temperature light detector that can sense the full infrared spectrum has the potential to put heat vision technology into a contact lens.
Unlike comparable mid- and far-infrared detectors currently on the market, the detector developed by University of Michigan engineering researchers doesn't need bulky cooling equipment to work.
"We can make the entire design super-thin," said Zhaohui Zhong, assistant professor of electrical engineering and computer science. "It can be stacked on a contact lens or integrated with a cell phone."
Infrared ...
Southern Ocean iron cycle gives new insight into climate change
2014-03-16
An international team of researchers analysed the available data taken from all previous studies of the Southern Ocean, together with satellite images taken of the area, to quantify the amount of iron supplied to the surface waters of the Southern Ocean.
They found that deep winter mixing, a seasonal process which carries colder and deeper, nutrient-rich water to the surface, plays the most important role in transporting iron to the surface. The iron is then able to stimulate phytoplankton growth which supports the ocean's carbon cycle and the aquatic food chain
They ...
Regional warming triggers sustained mass loss in Northeast Greenland ice sheet
2014-03-16
Northeast Greenland, where the glacier is found, is of particular interest as numerical model predictions have suggested there is no significant mass loss for this sector, leading to a probable underestimation of future global sea-level rise from the region.
An international team of scientists, including Professor Jonathan Bamber from the University of Bristol, studied the Northeast Greenland Ice Stream which extends more than 600 km into the interior of the ice sheet: much further than any other in Greenland.
Professor Bamber said: "The Greenland ice sheet has contributed ...
Cancer therapy may be too targeted
2014-03-16
Researchers have identified two novel cancer genes that are associated with the development of a rare, highly aggressive, cancer of blood vessels. These genes may now act as markers for future treatments and explain why narrowly targeted therapies that are directed at just one target fail.
Angiosarcoma is a rare cancer of blood vessels. It occurs either spontaneously or can appear after radiotherapy treatment. Although quite rare, with approximately 100 people diagnosed with the cancer in the UK each year, the survival outcomes for the cancer are poorer than many other ...
Mercury contracted more than prior estimates, evidence shows
2014-03-16
New evidence gathered by NASA's MESSENGER spacecraft at Mercury indicates the planet closest to the sun has shrunk up to 7 kilometers in radius over the past 4 billion years, much more than earlier estimates.
The new finding, published in the journal Nature Geoscience Sunday, March 16, solves an apparent enigma about Mercury's evolution.
Older images of surface features indicated that, despite cooling over its lifetime, the rocky planet had barely shrunk at all. But modeling of the planet's formation and aging could not explain that finding.
Now, Paul K. Byrne and ...