(Press-News.org) Physicists working at the European Organization for Nuclear Research (CERN) in Geneva, Switzerland, have succeeded in trapping antihydrogen – the antimatter equivalent of the hydrogen atom – a milestone that could soon lead to experiments on a form of matter that disappeared mysteriously shortly after the birth of the universe 14 billion years ago.
The first artificially produced low energy antihydrogen atoms – consisting of a positron, or antimatter electron, orbiting an antiproton nucleus – were created at CERN in 2002, but until now the atoms have struck normal matter and annihilated in a flash of gamma-rays within microseconds of creation.
The ALPHA (Antihydrogen Laser PHysics Apparatus) experiment, an international collaboration that includes physicists from the University of California, Berkeley, and Lawrence Berkeley National Laboratory (LBNL), has now trapped 38 antihydrogen atoms, each for more than one-tenth of a second.
While the number and lifetime are insufficient to threaten the Vatican – in the 2000 novel and 2009 movie "Angels & Demons," a hidden vat of potentially explosive antihydrogen was buried under St. Peter's Basilica in Rome – it is a starting point for learning new physics, the researchers said.
"We are getting close to the point at which we can do some classes of experiments on the properties of antihydrogen," said Joel Fajans, UC Berkeley professor of physics, LBNL faculty scientist and ALPHA team member. "Initially, these will be crude experiments to test CPT symmetry, but since no one has been able to make these types of measurements on antimatter atoms at all, it's a good start."
CPT (charge-parity-time) symmetry is the hypothesis that physical interactions look the same if you flip the charge of all particles, change their parity – that is, invert their coordinates in space – and reverse time. Any differences between antihydrogen and hydrogen, such as differences in their atomic spectrum, automatically violate CPT, overthrow today's "standard model" of particles and their interactions, and may explain why antimatter, created in equal amounts during the universe's birth, is largely absent today.
The team's results will be published online Nov. 17 in advance of its print appearance in the British journal Nature.
Antimatter, first predicted by physicist Paul Dirac in 1931, has the opposite charge of normal matter and annihilates completely in a flash of energy upon interaction with normal matter. While astronomers see no evidence of significant antimatter annihilation in space, antimatter is produced during high-energy particle interactions on earth and in some decays of radioactive elements. UC Berkeley physicists Emilio Segre and Owen Chamberlain created antiprotons in the Bevatron accelerator at the Lawrence Radiation Laboratory, now LBNL, in 1955, confirming their existence and earning the scientists the 1959 Nobel Prize in physics.
Slow antihydrogen was produced at CERN in 2002 thanks to an antiproton decelerator that slowed antiprotons enough for them to be used in experiments that combined them with a cloud of positrons. The ATHENA experiment, a broad international collaboration, reported the first detection of cold antihydrogen, with the rival ATRAP experiment close behind.
The ATHENA experiment closed down in 2004, to be superseded by ALPHA, coordinated by Jeffrey Hangst of the University of Aarhus in Denmark. Since then, the ALPHA and ATRAP teams have competed to trap antihydrogen for experiments, in particular, laser experiments to measure the antihydrogen spectrum (the color with which it glows) – and gravity measurements. Before the recent results, the CERN experiments have produced – only fleetingly – tens of millions of antihydrogen atoms, Fajans said.
ALPHA's approach was to cool antiprotons and compress them into a matchstick-size cloud (20 millimeters long and 1.4 millimeters in diameter). Then, using autoresonance, a technique developed by UC Berkeley visiting professor Lazar Friedland and first explored in plasmas by Fajans and former U.C Berkeley graduate student Erik Gilson, the cloud of cold, compressed antiprotons is nudged to overlap a like-size positron cloud, where the two particles mate to form antihydrogen.
All this happens inside a magnetic bottle that traps the antihydrogen atoms. The magnetic trap is a specially configured magnetic field that Fajans and then-UC Berkeley undergraduate Andrea Schmidt first proposed, using an unusual and expensive octupole superconducting magnet to create a more stable plasma.
"For the moment, we keep antihydrogen atoms around for at least 172 milliseconds – about a sixth of a second – long enough to make sure we have trapped them," said colleague Jonathan Wurtele, UC Berkeley professor of physics and LBNL faculty scientist. Wurtele collaborated with LBNL visitor Katia Gomberoff, staff members Alex Friedman, David Grote and Jean-Luc Vay and with Fajans to simulate the new and original magnetic configurations.
Trapping antihydrogen isn't easy, Fajans said, because it is a neutral, or chargeless, particle. Magnetic bottles are generally used to trap charged particles, such as ionized atoms. These charged particles spiral along magnetic field lines until they encounter an electric field that bounces them back towards the center of the bottle.
Neutral antihydrogen, however, would normally be unaffected by these fields. But the team takes advantage of the tiny magnetic moment of the antihydrogen atom to trap it using a steeply increasing field – a so-called magnetic mirror – that reflects them backward toward the center. Because the magnetic moment is so small, the antihydrogen has to be very cold: less than about one-half degree above absolute zero (0.5 Kelvin). That means the team had to slow down the antiprotons by a factor of one hundred billion from their initial energy emerging from the antiproton decelerator.
Once trapped, the experimenters sweep out the lingering antiprotons with an electric field, then shut off the mirror fields and let the trapped antihydrogen atoms annihilate with normal matter. Surrounding detectors are sensitive to the charged pions that result from the proton-antiproton annihilation. Cosmic rays can also set off the detector, but their straight-line tracks can be easily distinguished, Fajans said. A few antiprotons could potentially remain in the trap, and their annihilations would look similar to those of antihydrogen, but the physicists' simulations show that such events can also be successfully distinguished from antihydrogen annihilations.
During August and September of 2010, the team detected an antihydrogen atom in 38 of the 335 cycles of antiproton injection. Given that their detector efficiency is about 50 percent, the team calculated that it captured approximately 80 of the several million antihydrogen atoms produced during these cycles. Experiments in 2009 turned up six candidate antihydrogen atoms, but they have not been confirmed.
ALPHA continues to detect antihydrogen atoms at an increasing rate as the experimenters learn how to better tune their experiment, Fajans said.
INFORMATION:
Of the 42 co-authors of the new paper, 10 are or were affiliated with UC Berkeley: Fajans; Wurtele; current graduate students Marcelo Baquero-Ruiz, Steve Chapman, Alex Povilus and Chukman So; former graduate student Will Bertsche; former sabbatical visitor Eli Sarid; and past visitors Daniel Silveira and Dirk van der Werf. Other UC Berkeley contributors to the research are former undergraduates Crystal Bray, Patrick Ko and Korana Burke, and former graduate student Erik Gilson. Other LBNL contributors include Alex Friedman, David Grote, Jean-Luc Vay and former visiting scientists Katia Gomberoff and Alon Deutsch.
Antihydrogen trapped for first time
CERN antiprotons combined with positrons at low speed and captured in magnetic trap
2010-11-18
ELSE PRESS RELEASES FROM THIS DATE:
Scripps Research scientists devise broad new technique for screening proteins
2010-11-18
LA JOLLA, CA – November 15, 2010 –– A team led by scientists from The Scripps Research Institute has developed a powerful new method for detecting functional sites on proteins. The technique may have broad applications in basic research and drug development.
Described in an advance, online publication of Nature on November 17, 2010, the method enables scientists to take a sample of cells, locate the sites on their proteins that have a certain kind of biochemical reactivity, and measure the degree of that reactivity.
"It lets us find functional sites on proteins more ...
Why estrogen makes you smarter
2010-11-18
CHICAGO --- Estrogen is an elixir for the brain, sharpening mental performance in humans and animals and showing promise as a treatment for disorders of the brain such as Alzheimer's disease and schizophrenia. But long-term estrogen therapy, once prescribed routinely for menopausal women, now is quite controversial because of research showing it increases the risk of cancer, heart disease and stroke.
Northwestern Medicine researchers have discovered how to reap the benefits of estrogen without the risk. Using a special compound, they flipped a switch that mimics the effect ...
Scientists identify antivirus system
2010-11-18
Viruses have led scientists at Washington University School of Medicine in St. Louis to the discovery of a security system in host cells.
Viruses that cause disease in animals beat the security system millennia ago. But now that researchers are aware of it, they can explore the possibility of bringing the system back into play in the fight against diseases such as sudden acute respiratory syndrome (SARS), West Nile virus, dengue and yellow fever.
The findings, published in Nature, solve a 35-year-old mystery that began when National Institutes of Health researcher Bernard ...
Mortal chemical combat typifies the world of bacteria
2010-11-18
CHAPEL HILL, N.C. -- Like all organisms, bacteria must compete for resources to survive, even if it means a fight to the death.
New research led by scientists from the University of North Carolina at Chapel Hill School of Medicine and the University of California, Santa Barbara, describes new complexities in the close chemical combat waged among bacteria.
And the findings from this microscopic war zone may have implications for human health and survival.
"It has been known for a long time that bacteria can produce toxins that they release into their surroundings ...
Novel genetic mutation that causes the most common form of eye cancer discovered
2010-11-18
NEW YORK, November, 17, 2010 — An international, multi-center study has revealed the discovery of a novel oncogene that is associated with uveal melanoma, the most common form of eye cancer. Researchers have isolated an oncogene called GNA11 and have found that it is present in more than 40 percent of tumor samples taken from patients with uveal melanoma. The findings are being published early online November 17, 2010 in the New England Journal of Medicine and will appear in the December 2, 2010, print issue.
"These findings are significant because we now have a much ...
Cardiac MR sheds light on obscure heart muscle condition
2010-11-18
Left ventricular non-compaction (LVNC), a cardiomyopathy about which little is fully understood, is associated with heart failure (HF), stroke and ventricular arrhythmias, according to a study to be presented Nov. 17 at the 2010 American Heart Association (AHA) Scientific Sessions in Chicago. The researchers also will report that advanced imaging technologies reveal that developing these cardiac risks appear to progress over time in patients with LVNC.
LVNC is an inherited heart muscle condition in which the muscular wall of the left ventricle appears to be spongy and ...
Racial profiling to limit terror attacks is fundamentally flawed
2010-11-18
Stop using racial profiling, says Professor William Press from the University of Texas at Austin. He claims that as well as being politically and ethically questionable, racial profiling does no better in helping law enforcement officials in their task of catching terrorists than standard uniform random sampling techniques. This is the topic of a paper publishing today in Significance, the magazine of the Royal Statistical Society and the American Statistical Association.
Racial profiling rests on the idea that people from particular racial or ethnic groups are more ...
Regenerative stem cell therapy offers new hope for treating cardiovascular disease
2010-11-18
Northwestern Medicine physician researchers are revolutionizing treatment of cardiovascular disease by utilizing patients' own stem cells to regenerate heart and vascular tissue. Northwestern Medicine is the lead site for a study examining stem cell transplantation as treatment for critical limb ischemia. Chief investigator Douglas Losordo, MD, director of the Program in Cardiovascular Regenerative Medicine at Northwestern Memorial Hospital and the Eileen M. Foell Professor of Heart Research of Northwestern University's Feinberg School of Medicine, will present the findings ...
Caltech physicists demonstrate a four-fold quantum memory
2010-11-18
PASADENA, Calif. — Researchers at the California Institute of Technology (Caltech) have demonstrated quantum entanglement for a quantum state stored in four spatially distinct atomic memories.
Their work, described in the November 18 issue of the journal Nature, also demonstrated a quantum interface between the atomic memories—which represent something akin to a computer "hard drive" for entanglement—and four beams of light, thereby enabling the four-fold entanglement to be distributed by photons across quantum networks. The research represents an important achievement ...
New drug targets vitamin D receptors in hormone resistant prostate cancers
2010-11-18
A new anti-cancer drug aimed at vitamin D receptors on cancer cells has prompted encouraging responses in the levels of PSA (prostate specific antigen) in men with prostate cancer that has become resistant to hormonal therapies.
Results of the phase II(a) clinical trial will be presented at the 22nd EORTC-NCI-AACR [1] Symposium on Molecular Targets and Cancer Therapeutics in Berlin today (Thursday). The trial found that when the new drug, inecalcitol, was combined with the existing, current therapy (docetaxel and prednisone) 83% of patients responded to the treatment ...
LAST 30 PRESS RELEASES:
Scientists unlock secrets behind flowering of the king of fruits
Texas A&M researchers illuminate the mysteries of icy ocean worlds
Prosthetic material could help reduce infections from intravenous catheters
Can the heart heal itself? New study says it can
Microscopic discovery in cancer cells could have a big impact
Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer
Breakthrough new material brings affordable, sustainable future within grasp
How everyday activities inside your home can generate energy
Inequality weakens local governance and public satisfaction, study finds
Uncovering key molecular factors behind malaria’s deadliest strain
UC Davis researchers help decode the cause of aggressive breast cancer in women of color
Researchers discovered replication hubs for human norovirus
SNU researchers develop the world’s most sensitive flexible strain sensor
Tiny, wireless antennas use light to monitor cellular communication
Neutrality has played a pivotal, but under-examined, role in international relations, new research shows
Study reveals right whales live 130 years — or more
Researchers reveal how human eyelashes promote water drainage
Pollinators most vulnerable to rising global temperatures are flies, study shows
DFG to fund eight new research units
Modern AI systems have achieved Turing's vision, but not exactly how he hoped
Quantum walk computing unlocks new potential in quantum science and technology
Construction materials and household items are a part of a long-term carbon sink called the “technosphere”
First demonstration of quantum teleportation over busy Internet cables
Disparities and gaps in breast cancer screening for women ages 40 to 49
US tobacco 21 policies and potential mortality reductions by state
AI-driven approach reveals hidden hazards of chemical mixtures in rivers
Older age linked to increased complications after breast reconstruction
ESA and NASA satellites deliver first joint picture of Greenland Ice Sheet melting
Early detection model for pancreatic necrosis improves patient outcomes
Poor vascular health accelerates brain ageing
[Press-News.org] Antihydrogen trapped for first timeCERN antiprotons combined with positrons at low speed and captured in magnetic trap