(Press-News.org) WHAT:
Researchers from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, have determined a key mechanism by which Bacillus anthracis bacteria initiate anthrax infection despite being greatly outnumbered by immune system scavenger cells. The finding, made by studying genetically modified mice, adds new detail to the picture of early-stage anthrax infection and supports efforts to develop vaccines and drugs that would block this part of the cycle.
To start an infection, anthrax bacteria release a toxin that binds to immune cells through two receptors, TEM8 and CMG2, found on the cell surface. The binding allows two additional bacterial toxins to enter the cells, setting off a chain of events that impairs their ability to ingest and kill the bacteria.
In the new research, NIAID investigators Stephen Leppla, Ph.D., Shihui Liu, M.D., Ph.D., and colleagues bred mice that lacked CMG2 receptors on two kinds of immune cells, neutrophils and macrophages. These usually are the first cells to arrive at the site of an anthrax infection, where they engulf the invading bacteria and try to prevent the spread of infection.
Mice without CMG2 receptors on these immune cells were completely resistant to infection by B. anthracis bacteria, experiencing only a temporary swelling at the site of infection, and fully clearing the infection within two weeks. In contrast, in normal mice, the level of anthrax bacteria increased rapidly in the 48 hours following infection, and all the mice died within six days.
The researchers concluded that B. anthracis uses CMG2 receptors to impair the scavenging action of neutrophils and macrophages during early infection, giving the bacteria time to multiply to levels sufficient to overwhelm the body's defenses. Developing drugs and vaccines that block B. anthracis from establishing early infection via binding to the CMG2 receptor, say the study authors, may be crucial to success in treating and preventing anthrax disease.
INFORMATION:
ARTICLE:
S Liu et al. Anthrax toxin targeting of myeloid cells through the CMG2 receptor is essential for establishment of Bacillus anthracis infections in mice. Cell Host and Microbe. DOI: 10.1016/j.chom.2010.10.004 (2010).
WHO:
Stephen H. Leppla, Ph.D., Laboratory of Bacterial Diseases, NIAID, is available to comment on this research.
CONTACT:
To schedule interviews, please contact Anne A. Oplinger in the NIAID Office of Communications at 301-402-1663 or niaidnews@niaid.nih.gov.
NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.
The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.
NIH scientists show how anthrax bacteria impair immune response
Studies in mice reveal how bacteria hamper frontline defense cells
2010-11-18
ELSE PRESS RELEASES FROM THIS DATE:
New insight into dementia pathophysiology
2010-11-18
Frontotemporal lobar degeneration (FTLD) refers to a group of disorders associated with degeneration of the frontal and temporal lobes of the brain. Symptoms include dementia, aphasia, and semantic disorders. Mutation of the gene for PGRN is associated with the most common form of FTLD, which is also characterized by inclusions of TDP-43 protein in the brain. Abnormal accumulation of TDP-43 has also been linked with amyotrophic lateral sclerosis (ALS).
While it is clear that a reduction in PGRN is causative for FTLD-TDP, the underlying mechanism is unknown. "Elucidation ...
Laser system developed at Stanford shows promise for cataract surgery
2010-11-18
STANFORD, Calif. — Imagine trying to cut by hand a perfect circle roughly one-third the size of a penny. Then consider that instead of a sheet of paper, you're working with a scalpel and a thin, elastic, transparent layer of tissue, which both offers resistance and tears easily. And, by the way, you're doing it inside someone's eye, and a slip could result in a serious impairment to vision.
This standard step in cataract surgery — the removal of a disc from the capsule surrounding the eye's lens, a procedure known as capsulorhexis — is one of the few aspects of the operation ...
Scientists question indicator of fisheries health, evidence for 'fishing down food webs'
2010-11-18
The most widely adopted measure for assessing the state of the world's oceans and fisheries led to inaccurate conclusions in nearly half the ecosystems where it was applied according to new analysis by an international team led by a University of Washington fisheries scientist.
"Applied to individual ecosystems it's like flipping a coin, half the time you get the right answer and half the time you get the wrong answer," said Trevor Branch, a UW assistant professor of aquatic and fishery sciences.
In 1998, the journal Science published a groundbreaking paper that was ...
Rett syndrome mobilizes jumping genes in the brain
2010-11-18
LA JOLLA, CA-With few exceptions, jumping genes-restless bits of DNA that can move freely about the genome-are forced to stay put. In patients with Rett syndrome, however, a mutation in the MeCP2 gene mobilizes so-called L1 retrotransposons in brain cells, reshuffling their genomes and possibly contributing to the symptoms of the disease when they find their way into active genes, report researchers at the Salk Institute for Biological Studies.
Their findings, published in the November 18, 2010 issue of the journal Nature, could not only explain how a single mutation ...
New imaging method developed at Stanford reveals stunning details of brain connections
2010-11-18
STANFORD, Calif. — Researchers at the Stanford University School of Medicine, applying a state-of-the-art imaging system to brain-tissue samples from mice, have been able to quickly and accurately locate and count the myriad connections between nerve cells in unprecedented detail, as well as to capture and catalog those connections' surprising variety.
A typical healthy human brain contains about 200 billion nerve cells, or neurons, linked to one another via hundreds of trillions of tiny contacts called synapses. It is at these synapses that an electrical impulse traveling ...
Antihydrogen trapped for first time
2010-11-18
Physicists working at the European Organization for Nuclear Research (CERN) in Geneva, Switzerland, have succeeded in trapping antihydrogen – the antimatter equivalent of the hydrogen atom – a milestone that could soon lead to experiments on a form of matter that disappeared mysteriously shortly after the birth of the universe 14 billion years ago.
The first artificially produced low energy antihydrogen atoms – consisting of a positron, or antimatter electron, orbiting an antiproton nucleus – were created at CERN in 2002, but until now the atoms have struck normal matter ...
Scripps Research scientists devise broad new technique for screening proteins
2010-11-18
LA JOLLA, CA – November 15, 2010 –– A team led by scientists from The Scripps Research Institute has developed a powerful new method for detecting functional sites on proteins. The technique may have broad applications in basic research and drug development.
Described in an advance, online publication of Nature on November 17, 2010, the method enables scientists to take a sample of cells, locate the sites on their proteins that have a certain kind of biochemical reactivity, and measure the degree of that reactivity.
"It lets us find functional sites on proteins more ...
Why estrogen makes you smarter
2010-11-18
CHICAGO --- Estrogen is an elixir for the brain, sharpening mental performance in humans and animals and showing promise as a treatment for disorders of the brain such as Alzheimer's disease and schizophrenia. But long-term estrogen therapy, once prescribed routinely for menopausal women, now is quite controversial because of research showing it increases the risk of cancer, heart disease and stroke.
Northwestern Medicine researchers have discovered how to reap the benefits of estrogen without the risk. Using a special compound, they flipped a switch that mimics the effect ...
Scientists identify antivirus system
2010-11-18
Viruses have led scientists at Washington University School of Medicine in St. Louis to the discovery of a security system in host cells.
Viruses that cause disease in animals beat the security system millennia ago. But now that researchers are aware of it, they can explore the possibility of bringing the system back into play in the fight against diseases such as sudden acute respiratory syndrome (SARS), West Nile virus, dengue and yellow fever.
The findings, published in Nature, solve a 35-year-old mystery that began when National Institutes of Health researcher Bernard ...
Mortal chemical combat typifies the world of bacteria
2010-11-18
CHAPEL HILL, N.C. -- Like all organisms, bacteria must compete for resources to survive, even if it means a fight to the death.
New research led by scientists from the University of North Carolina at Chapel Hill School of Medicine and the University of California, Santa Barbara, describes new complexities in the close chemical combat waged among bacteria.
And the findings from this microscopic war zone may have implications for human health and survival.
"It has been known for a long time that bacteria can produce toxins that they release into their surroundings ...
LAST 30 PRESS RELEASES:
Fig trees convert atmospheric CO2 to stone
Intra-arterial tenecteplase for acute stroke after successful endovascular therapy
Study reveals beneficial microbes that can sustain yields in unfertilized fields
Robotic probe quickly measures key properties of new materials
Climate change cuts milk production, even when farmers cool their cows
Frozen, but not sealed: Arctic Ocean remained open to life during ice ages
Some like it cold: Cryorhodopsins
Demystifying gut bacteria with AI
Human wellbeing on a finite planet towards 2100: new study shows humanity at a crossroads
Unlocking the hidden biodiversity of Europe’s villages
Planned hydrogen refuelling stations may lead to millions of euros in yearly losses
Planned C-sections increase the risk of certain childhood cancers
Adults who have survived childhood cancer are at increased risk of severe COVID-19
Drones reveal extreme coral mortality after bleaching
New genetic finding uncovers hidden cause of arsenic resistance in acute promyelocytic leukemia
Native habitats hold the key to the much-loved smashed avocado’s future
Using lightning to make ammonia out of thin air
Machine learning potential-driven insights into pH-dependent CO₂ reduction
Physician associates provide safe care for diagnosed patients when directly supervised by a doctor
How game-play with robots can bring out their human side
Asthma: patient expectations influence the course of the disease
UNM physician tests drug that causes nerve tissue to emit light, enabling faster, safer surgery
New study identifies EMP1 as a key driver of pancreatic cancer progression and poor prognosis
XPR1 identified as a key regulator of ovarian cancer growth through autophagy and immune evasion
Flexible, eco-friendly electronic plastic for wearable tech, sensors
Can the Large Hadron Collider snap string theory?
Stuckeman professor’s new book explores ‘socially sustainable’ architecture
Synthetic DNA nanoparticles for gene therapy
New model to find treatments for an aggressive blood cancer
Special issue of Journal of Intensive Medicine analyzes non-invasive respiratory support
[Press-News.org] NIH scientists show how anthrax bacteria impair immune responseStudies in mice reveal how bacteria hamper frontline defense cells