(Press-News.org) WASHINGTON — A research team at Georgetown Lombardi Comprehensive Cancer Center reports that inhibiting a single protein completely shuts down growth of pancreatic cancer, a highly lethal disease with no effective therapy.
Their study, to be published May 6th in Science Signaling, demonstrates in animal models and in human cancer cells that while suppressing Yes-associated protein (Yes) did not prevent pancreatic cancer from first developing, it stopped any further growth.
"We believe this is the true Achilles heel of pancreatic cancer, because knocking out Yes crushes this really aggressive cancer. This appears to be the critical switch that promotes cancer growth and progression," says the study's senior investigator, Chunling Yi, PhD, an assistant professor of oncology at Georgetown Lombardi.
Yi added that because Yes is over-expressed in other cancers, such as lung, liver and stomach tumors, researchers are already working on small molecule drugs that will inhibit activity of the protein and its partnering molecules.
The study was conducted in mouse models of pancreatic ductal adenocarcinoma (PDAC), which accounts for all but five percent of human pancreatic cancers. These mice have a mutation in the KRAS gene, as well as a mutation in their p53 gene. "More than 95 percent of pancreatic cancer patients have a KRAS mutation and about 75 percent have a mutation in p53, so these mice provide a natural model of the human disease," she says.
Because it has been very difficult to devise drugs that target either KRAS or p53, in this study the researchers looked for other potential druggable targets involved in uncontrolled growth of pancreatic cancer.
They found that Yes was over-expressed in both mouse models and human samples of PDAC, and they discovered that the KRAS mutation found in most pancreatic cancer activates Yes. "The KRAS mutation uses Yes to make cancer cells grow, so shutting down Yes defuses the mutated gene's activity," Yi says.
Yes also shuts down activity of the p53 oncogene, though the link between p53 and Yes is not yet known.
"KRAS and p53 are two of the most mutated genes in human cancers, so our hope is that a drug that inhibits Yes will work in pancreatic cancer patients — who have both mutations — and in other cancers with one or both mutations," Yi says.
INFORMATION:
Georgetown Lombardi co-authors include oncologist and professor Anton Wellstein, MD, PhD, and pediatric oncologist and professor Jeffrey Toretsky, MD.
The authors report having no personal financial interests related to the study.
External funding for this research provided by the National Cancer Institute (CA71508), a Burroughs Wellcome Clinical Scientist Award in Translational Research and the National Institutes of Health (R01CA133662 and R01CA138212).
About Georgetown Lombardi Comprehensive Cancer Center
Georgetown Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and MedStar Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Georgetown Lombardi is one of only 41 comprehensive cancer centers in the nation, as designated by the National Cancer Institute (grant #P30 CA051008), and the only one in the Washington, DC area. For more information, go to http://lombardi.georgetown.edu.
About Georgetown University Medical Center
Georgetown University Medical Center (GUMC) is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization, which accounts for the majority of externally funded research at GUMC including a Clinical and Translational Science Award from the National Institutes of Health. END
'Achilles heel' of pancreatic cancer identified
2014-05-02
ELSE PRESS RELEASES FROM THIS DATE:
Decoding the chemical vocabulary of plants
2014-05-02
Stanford, CA—Plants spend their entire lifetime rooted to one spot. When faced with a bad situation, such as a swarm of hungry herbivores or a viral outbreak, they have no option to flee but instead must fight to survive. What is the key to their defense? Chemistry.
Thanks to this ongoing conflict, plants have evolved into amazing chemists, capable of synthesizing tens of thousands of compounds from thousands of genes. These chemicals, known as specialized metabolites, allow plants to withstand transient threats from their environment. What's more, some of the same compounds ...
A new syndrome caused by mutations in AHDC1
2014-05-02
HOUSTON – (May 1, 2014) -- A team of researchers led by Baylor College of Medicine have identified the gene underlying a newly recognized genetic syndrome that has symptoms of sleep apnea, delayed speech and hyptonia, or generalized upper body weakness.
The study published online today in the American Journal of Human Genetics.
The Baylor researchers first studied a patient from Australia with these symptoms who had been seen by many doctors and had multiple diagnostic tests, without any diagnosis.
Although there was no family history of the disease, the researchers ...
How do our cells move? Liquid droplets could explain
2014-05-02
'Cell migration' is a broad term for all the processes associated with the movement of cells from one location to another. It lies at the core of biological processes like embryonic development, immune responses and wound healing, but also autoimmune diseases and metastasis of cancerous cells. Cell migration is achieved through the movement of the cell's membrane, which is powered by the action of a protein network inside the cell. However, this interaction is affected by the cell's overall shape, but exactly how this takes place is unclear. Publishing in Current Biology, ...
Expensive helmets do not improve outcomes in healthy babies with positional skull flattening
2014-05-02
Babies who have skull deformation because they lie in the same position most of the time do not benefit from wearing a corrective helmet, finds research published today on bmj.com.
There was no meaningful difference in skull shape at the age of two years between children treated with therapy helmet and those who received no active treatment. Both groups showed similar improvements although only a quarter made a full recovery to a normal head shape, according to the team of researchers based in The Netherlands.
Around one baby in five under the age of six months develops ...
10-year study shows 'Lethal Factor' could be X-factor for new anthrax vaccine
2014-05-02
Researchers have identified a section of the anthrax toxin Lethal Factor that could help produce a more effective vaccine.
Anthrax is a potentially lethal disease caused by a bacterium called Bacillus anthracis. The bacteria produce spores that when inhaled, ingested or absorbed into the skin release toxins. When anthrax affects the lungs or intestines it can cause death within a few days whilst infection of the skin (cutaneous anthrax) is less dangerous.
Infection can occur from contact with infected livestock, meat or hides, but most people know about anthrax from ...
Breaking up water: Controlling molecular vibrations to produce hydrogen
2014-05-02
Natural gas (methane) can be converted into hydrogen (H2), which is used in clean energy, synthetic fertilizers, and many other chemicals. The reaction requires water and a nickel catalyst. Methane and water molecules attach on the catalyst's surface, where they dissociate into their atomic components. These then recombine to form different compounds like H2 and CO. Previous research has focused mainly on understanding how methane dissociates, but experimental constraints have limited research into water dissociation. Publishing in Science, EPFL scientists have used lasers ...
Climate change study reveals unappreciated impacts on biodiversity
2014-05-02
Shrinking ice sheets and melting ice caps are well known consequences of climate change. But a new study reveals that impacts on biodiversity will be just as severe in other regions of the world. When multiple dimensions of climate change are analyzed, different regions emerge as threatened by different aspects of climate change. The tropics, for example, will be highly affected by local changes in temperature and precipitation, leading to novel climates with no current analogues in the planet. These results, recently published in Science, expose the complexities of climate ...
The Lancet and The Lancet Respiratory Medicine: Controlling, diagnosing, and preventing asthma
2014-05-02
On Friday 2 May, 2014, The Lancet and The Lancet Respiratory Medicine will release three new review articles and an Editorial on asthma, ahead of World Asthma Day on May 6 and the American Thoracic Society's international conference (ATS 2014) in San Diego (May 16-21).
Editorial – Controlling asthma
Outdoor air pollution and asthma
Asthma genetics and personalised medicine
Diagnosis, management, and prognosis of preschool wheeze
The Lancet: Outdoor air pollution and asthma
Traffic and power generation are the main sources of urban air pollution. The idea that ...
Connection between genetic variation and immune system, risk for neurodegenerative and other disease
2014-05-02
Boston and Cambridge, MA – Researchers from Brigham and Women's Hospital (BWH), Harvard Medical School (HMS), the Broad Institute of MIT and Harvard, Massachusetts General Hospital (MGH), and University of Chicago report findings demonstrating how genetic variations among healthy, young individuals can influence immune cell function. Many of those variants are also genetic risk factors for common diseases such as Alzheimer's disease, diabetes, and multiple sclerosis later in life, offering new insight into disease pathology.
The study will be published in the May 2, ...
Delving deep into the brain
2014-05-02
CAMBRIDGE, MA -- Launched in 2013, the national BRAIN Initiative aims to revolutionize our understanding of cognition by mapping the activity of every neuron in the human brain, revealing how brain circuits interact to create memories, learn new skills, and interpret the world around us.
Before that can happen, neuroscientists need new tools that will let them probe the brain more deeply and in greater detail, says Alan Jasanoff, an MIT associate professor of biological engineering. "There's a general recognition that in order to understand the brain's processes in comprehensive ...