(Press-News.org) UPTON, NY—Scientists seeking to understand the intricacies of high-temperature superconductivity—the ability of certain materials to carry electrical current with no energy loss—have been particularly puzzled by a mysterious phase that emerges as charge carriers are added that appears to compete with superconductivity. It's also been a mystery why, within this "pseudogap" phase, the movement of superconducting electrons appears to be restricted to certain directions. So exploring the pseudogap and whether and how it affects the movement of electrons has been a pivotal challenge.
Now, a team lead by scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Cornell University have used unique capabilities to reveal detailed characteristics of the electrons in one of these materials as it transforms from an insulator through the mysterious pseudogap phase and eventually into a full-blown superconductor. The results, described in the May 9, 2014, issue of Science, link two distinct personality changes in the material's electrons: the disappearance of a rather exotic periodic static arrangement of certain electrons within the pseudogap phase, and the sudden ability of all the material's electrons to move freely in any direction. The finding strengthens support for the idea that the periodic arrangement—variously referred to as "stripes" or "density waves"—restricts the flow of electrons and impairs maximal superconductivity in the pseudogap phase.
"This is the first time an experiment has directly linked the disappearance of the density waves and their associated nanoscale crystal distortions with the emergence of universally free-flowing electrons needed for unrestricted superconductivity," said lead author J.C. Séamus Davis, a senior physicist and Director of DOE's Center for Emergent Superconductivity at Brookhaven Lab and also a professor at both Cornell University and the St. Andrews University in Scotland. "These new measurements finally show us why, in the mysterious pseudogap state of this material, the electrons are less free to move."
That information, in turn, may help scientists engineer ways to get superconductivity flowing under more favorable conditions. Right now, even these "high-temperature" copper-oxide materials operate as superconductors only when cooled to below -100 degrees Celsius. "That's room temperature during a particularly bad winter in Antarctica," Davis said. The hope is to find ways to raise the operating temperature for real-world energy-saving applications—things like highly efficient power generation and transmission and computers that work at speeds thousands of times faster than today's.
Unique tool tracks electronic states
In their native state, even at super chilly temperatures, the copper-oxide materials are actually strong insulators. To induce them to superconduct, the scientists chemically inject additional electronic carriers, a process called doping. But tracking how this process alters the electronic structure and associated nanoscale distortions as the material transforms from insulator to pseudogap phase and eventually full-blown superconductivity is no easy task.
"The crystal distortions appear in our experiments like the ghostly, smeary shadows that a moving person makes in a long photographic exposure, making it difficult to really recognize their features and their character, or even see them at all in many cases," said Simon Billinge, a Brookhaven physicist who heads a team exploring the role of such nanoscale fluctuations in superconductors and other complex materials. "We are only now developing tools and methods to see and track these subtle effects."
To capture the elusive electronic behavior, Chung-Koo Kim, a postdoctoral fellow in Billinge's group, and Kazuhiro Fujita, a Research Associate in Davis' Group, worked with Davis using a spectroscopic imaging scanning tunneling microscope invented by the latter. This tool allows the scientists to simultaneously visualize the spatial arrangements of individual static electrons and the direction of travel of those that are free to move. They systematically scanned the copper-oxide material under various levels of doping to see how the arrangements and behavior of the electrons changed as the material evolved.
Davis likens the technique to flying over a frozen river where you can see static patterns formed by the ice while also detecting flowing liquid water—and doing it over and over through the spring as the frozen waterway gradually melts. In the copper-oxide material, instead of raising the temperature, the scientists raise the level of doping to "melt" the density waves at a particular "critical point."
"This was a massive effort, taking many person-years, making long and difficult measurements on multiple samples to track the evolution of these two effects," Davis said.
Evidence of electron personality change
At low charge carrier density, the microscopic flyovers revealed somewhat static, ordered electrons—the "frozen" stripe patterns—and the flow of superconducting electrons limited to only certain directions. But subsequent scans taken as more charge carriers were added revealed that the static pattern disappeared and electrons began to flow freely in all directions at exactly the same level of doping—close to the point at which the most robust superconductivity sets in.
"This is the first direct observation that these two phenomena are linked: The density waves with their associated nanoscale distortions disappear and the electrons in the material change their personality suddenly at a well-defined material composition," Billinge said.
This direct observation confirms a long-held suspicion that the static electron arrangement and associated nanoscale fluctuations impair the free flow of electrons—like ice on a river impairs the flow of liquid water, Davis said. By analogy, adding charge carriers breaks up the static pattern, like melting the ice.
"We are demonstrating that when the electrons are no longer hampered by the 'frozen' density wave state, they become universally free to flow unimpeded," Davis said.
Another way to look at it, Billinge said, is by thinking of a chess game with kings, bishops, and knights filling the board so none can move. As you gradually remove some of the pieces—analogous to doping with charge carriers called "holes," which is what the scientists did—some of the pieces would be free to move according to their usual rules. More holes would allow more movement. But what the scientists observed instead is that at low "hole" concentration, certain kinds of movement (say, the kings' forward and sideways movements) were prohibited and that the chessboard itself appeared to have a different kind of pattern—stripes instead of alternating squares. But at the critical hole concentration—precisely 20 percent—the researchers found that both the quantum rules-of-the-game and the board itself changed, allowing the free movement of all pieces.
Of course, freeing electrons in a copper-oxide insulator to get superconducting current flowing for useful applications won't be quite as easy as melting ice to get liquid water or removing pieces from a chessboard. But it does offer clues.
"What this discovery implies is that if you prevented the static stripes from ever occurring, you might end up with a material that could act as a superconductor at a lower density of doping—and a much higher temperature," Davis said.
INFORMATION:
This research was supported by the DOE Office of Science.
DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.
Scientists find solution to 2 long-standing mysteries of cuprate superconductivity
Findings unequivocally link 2 'personality' changes of electrons at critical point
2014-05-08
ELSE PRESS RELEASES FROM THIS DATE:
'Rice theory' explains north-south China cultural differences, study shows
2014-05-08
A new cultural psychology study has found that psychological differences between the people of northern and southern China mirror the differences between community-oriented East Asia and the more individualistic Western world – and the differences seem to have come about because southern China has grown rice for thousands of years, whereas the north has grown wheat.
"It's easy to think of China as a single culture, but we found that China has very distinct northern and southern psychological cultures and that southern China's history of rice farming can explain why people ...
Exploring the magnetism of a single atom
2014-05-08
Magnetic devices like hard drives, magnetic random access memories (MRAMs), molecular magnets, and quantum computers depend on the manipulation of magnetic properties. In an atom, magnetism arises from the spin and orbital momentum of its electrons. 'Magnetic anisotropy' describes how an atom's magnetic properties depend on the orientation of the electrons' orbits relative to the structure of a material. It also provides directionality and stability to magnetization. Publishing in Science, researchers led by EPFL combine various experimental and computational methods to ...
Plant hormone has dual role in triggering flower formation, Penn study finds
2014-05-08
Flowers aren't just pretty to look at, they are how plants reproduce. In agricultural plants, the timing and regulation of flower formation has economic significance, affecting a crop's yield.
A new paper by researchers at the University of Pennsylvania published in the journal Science has revealed that a plant hormone once believed to promote flower formation in annual plants also plays a role in inhibiting flowers from forming. The dual role of this hormone, gibberellin, could be exploited to produce higher-yielding crop plants.
The study was led by Nobutoshi Yamaguchi ...
GaitTrack app makes cellphone a medical monitor for heart and lung patients
2014-05-08
CHAMPAIGN, Ill. — By simply carrying around their cellphones, patients who suffer from chronic disease could soon have an accurate health monitor that warns their doctors when their symptoms worsen.
GaitTrack, an app developed by researchers at the University of Illinois at Urbana-Champaign and the U. of I. at Chicago, turns a smartphone into a sophisticated medical device. Unlike other apps that merely count steps, GaitTrack uses eight motion parameters to perform a detailed analysis of a person's gait, or walking pattern, which can tell physicians much about a patient's ...
Tackling test anxiety may help prevent more severe problems
2014-05-08
Showing students how to cope with test anxiety might also help them to handle their built-up angst and fretfulness about other issues. The results of a new study by Carl Weems of the University of New Orleans show that anxiety intervention programs that focus on academic matters fit well into the demands of the school routine, and do not carry the same stigma among youth as general anxiety programs do. The research group was among the first to study the effects of Hurricane Katrina on community mental health and anxiety among youths, and the paper appears in Prevention ...
Ovarian cancer cells are more aggressive on soft tissues
2014-05-08
When ovarian cancer spreads from the ovaries it almost always does so to a layer of fatty tissue that lines the gut. A new study has found that ovarian cancer cells are more aggressive on these soft tissues due to the mechanical properties of this environment. The finding is contrary to what is seen with other malignant cancer cells that seem to prefer stiffer tissues.
"What we found is that there are some cancer cells that respond to softness as opposed to stiffness," said Michelle Dawson, an assistant professor in the School of Chemical and Biomolecular Engineering ...
Army drug users twice as likely to use synthetic marijuana as regular marijuana
2014-05-08
Social work researchers from the University of Washington have found that among a group of active-duty Army personnel who use illicit drugs, the most abused substance is synthetic marijuana, which is harder to detect than other drugs through standard drug tests.
The research will be published in the July 2014 issue of Addictive Behaviors, but is already online.
Synthetic marijuana, sometimes called "Spice," is made with shredded plant material coated with chemicals that are designed to mimic THC, the psychoactive compound found naturally in marijuana. The U.S. Drug ...
Single cell genome sequencing of malaria parasites
2014-05-08
SAN ANTONIO, May 8, 2014 – A new method for isolating and genome sequencing an individual malaria parasite cell has been developed by Texas Biomed researchers and their colleagues. This advance will allow scientists to improve their ability to identify the multiple types of malaria parasites infecting patients and lead to ways to best design drugs and vaccines to tackle this major global killer. Malaria remains the world's deadliest parasitic disease, killing 655,000 people in 2010.
Malaria parasite infections are complex and often contain multiple different parasite genotypes ...
New genomics technique could improve treatment and control of Malaria
2014-05-08
Single-cell genomics could provide new insight into the biology of Malaria parasites, including their virulence and levels of drug resistance, to ultimately improve treatment and control of the disease, according to new research funded by the Wellcome Trust and the National Institutes of Health.
The findings are revealed in a study by researchers at the Texas Biomedical Research Institute and published today in the journal Genome Research.
Malaria infections commonly contain complex mixtures of Plasmodium parasites which cause the disease. These mixtures, known as multiple ...
Open science journal publishes attempt to reproduce high-profile stem cell acid bath study
2014-05-08
In a study published today in F1000Research, Professor Kenneth Lee of the Chinese University of Hong Kong reveals the full experimental results of an attempt to replicate a controversial study published in Nature recently that suggested that bathing somatic cells in acid can reprogram them to induced pluripotent stem cells (iPS cells). With systematically collected and fully available data, Lee and his colleagues report that carefully replicating the original acid-treatment method does not induce pluripotency in two types of mouse somatic cells, including those used in ...
LAST 30 PRESS RELEASES:
Global HIV study finds that cardiovascular risk models underestimate for key populations
New study offers insights into how populations conform or go against the crowd
Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials
WashU researchers map individual brain dynamics
Technology for oxidizing atmospheric methane won’t help the climate
US Department of Energy announces Early Career Research Program for FY 2025
PECASE winners: 3 UVA engineering professors receive presidential early career awards
‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions
MSU researcher’s breakthrough model sheds light on solar storms and space weather
Nebraska psychology professor recognized with Presidential Early Career Award
New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration
Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins
From lab to field: CABBI pipeline delivers oil-rich sorghum
Stem cell therapy jumpstarts brain recovery after stroke
Polymer editing can upcycle waste into higher-performance plastics
Research on past hurricanes aims to reduce future risk
UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology
Panorama of our nearest galactic neighbor unveils hundreds of millions of stars
A chain reaction: HIV vaccines can lead to antibodies against antibodies
Bacteria in polymers form cables that grow into living gels
Rotavirus protein NSP4 manipulates gastrointestinal disease severity
‘Ding-dong:’ A study finds specific neurons with an immune doorbell
A major advance in biology combines DNA and RNA and could revolutionize cancer treatments
Neutrophil elastase as a predictor of delivery in pregnant women with preterm labor
NIH to lead implementation of National Plan to End Parkinson’s Act
Growth of private equity and hospital consolidation in primary care and price implications
Online advertising of compounded glucagon-like peptide-1 receptor agonists
Health care utilization and costs for older adults aging into Medicare after the affordable care act
Reading the genome and understanding evolution: Symbioses and gene transfer in leaf beetles
Brains of people with sickle cell disease appear older
[Press-News.org] Scientists find solution to 2 long-standing mysteries of cuprate superconductivityFindings unequivocally link 2 'personality' changes of electrons at critical point