(Press-News.org) Just because you can't see something doesn't mean it's not there.
Brain tumors are an extremely serious example of this and are not only difficult to treat—both adult and pediatric patients have a five-year survival rate of only 30 percent—but also have even been difficult to image, which could provide important information for deciding next steps in the treatment process.
However, Cincinnati Cancer Center and University of Cincinnati Cancer Institute research studies published in an April online issue of the Journal of Magnetic Resonance Imaging and a May issue of the Journal of Visualized Experiments (JoVE), an online peer-reviewed scientific journal that publishes experimental methods in video format, reveal possibly new ways to image glioblastoma multiforme tumors—a form of brain tumor—using the SapC-DOPS technology.
A lysosomal protein saposin C (SapC), and a phospholipid, known as dioleoylphosphatidylserine (DOPS), can be combined and assembled into tiny cavities, or nanovesicles, to target and kill many forms of cancer cells.
Lysosomes are membrane-enclosed organelles that contain enzymes capable of breaking down all types of biological components; phospholipids are major components of all cell membranes and form lipid bilayers—or cell membranes.
Xiaoyang Qi, PhD, member of the CCC, associate professor in the division of hematology oncology at the University of Cincinnati, a member of the UC Cancer and Neuroscience Institutes and the Brain Tumor Center, says his lab and collaborators have previously found that the combination of two natural cellular components, called SapC-DOPS, caused cell death in cancer cell types, including brain, lung, skin, prostate, blood and breast cancer, while sparing normal cells and tissues.
"We used this knowledge to gain assistance from our collaborators Kati LaSance, Vontz Core Imaging Lab (VCIL) director, and Patrick Winter, PhD, in the Imaging Research Center (IRC) at Cincinnati Children's Hospital Medical Center. We used SapC-DOPS as a transport vesicle to deliver bio-fluorescence agents and gadolinium-labeled contrast agents directly to brain tumors which provided visualization using optical imaging and MRI," Qi says.
"There are two things lacking when it comes to brain tumors: getting a good picture of them and treating them effectively," says LaSance. "With this discovery, there are possibilities to improve both. With good visualization of the tumor, physicians might one day be able to better determine which form of treatment—chemotherapy, radiation or surgery—would be best for a patient and can image a tumor at its smallest stages with hopes of intervening much earlier."
Qi says this is preclinical research, as the studies were done using animal models that were injected with the SapC-DOPS vesicle assembled with illuminating agents, but is translational in nature and could be tested soon in human populations.
"While optical imaging is not applicable to a patient population, both MRI and PET imaging are," he says. "The bio-fluorescent molecule used in the JoVE study can be substituted for a PET molecule and fortunately, PET imaging is widely used by doctors and hospitals in current cancer patients.
"This research has the potential to make a large impact in treatment of brain tumors, and most importantly, it would not have been impossible without support and collaboration from the VCIL and the IRC."
INFORMATION:
These studies were funded by the Mayfield Education and Research Foundation, a New Drug State Key Project (009ZX09102-205) and the National Institutes of Health/National Cancer Institute (1R01CA158372-01). Researchers cite no conflicts of interest.
The University of Cincinnati, Cincinnati Children's Hospital Medical Center and UC Health have created the Cincinnati Cancer Center—a joint effort designed to leverage the strengths of all three organizations in order to provide the best possible cancer diagnostics, research, treatment, and care for individuals in the Tristate region and the nation. To learn more, visit http://www.cincinnaticancercenter.org.
SapC-DOPS technology may help with imaging brain tumors, research shows
2014-05-14
ELSE PRESS RELEASES FROM THIS DATE:
How cone snail venom minimizes pain
2014-05-14
The venom from marine cone snails, used to immobilize prey, contains numerous peptides called conotoxins, some of which can act as painkillers in mammals. A recent study in The Journal of General Physiology provides new insight into the mechanisms by which one conotoxin, Vc1.1, inhibits pain. The findings help explain the analgesic powers of this naturally occurring toxin and could eventually lead to the development of synthetic forms of Vc1.1 to treat certain types of neuropathic pain in humans.
Neuropathic pain, a form of chronic pain that occurs in conjunction with ...
Scientists test hearing in Bristol Bay beluga whale population
2014-05-14
The ocean is an increasingly industrialized space. Shipping, fishing, and recreational vessels, oil and gas exploration and other human activities all increase noise levels in the ocean and make it more difficult for marine mammals to hear and potentially diminish their range of hearing.
"Hearing is the main way marine mammals find their way around the ocean," said Aran Mooney, a biologist at Woods Hole Oceanographic Institution (WHOI). It's important to know whether and to what extent human activity is negatively impacting them.
But how can we get marine mammals living ...
Snubbing lion hunters could preserve the endangered animals
2014-05-14
For hundreds of years young men from some ethnic groups in Tanzania,
called "lion dancers" because they elaborately acted out their lion
killing for spectators, were richly rewarded for killing lions that
preyed on livestock and people. Now when a lion dancer shows up he
might be called a rude name rather than receive a reward, according
to a new UC Davis study.
Some villagers are snubbing the lion killers, calling them "fakers"
and contemplating punishing them and those who continue to reward
them, said Monique Borgerhoff Mulder, anthropology professor at UC
Davis. ...
Deconstructing goal-oriented movement
2014-05-14
Our human brains are filled with maps: visual maps of our external environments, and motor maps that define how we interact physically within those environments. Somehow these separate points of reference need to correspond with — and to — one another in order for us to act, whether it's grasping a coffee cup or hitting a tennis ball.
How that happens is the focus of a new study by scientists at UC Santa Barbara. The researchers used neuroimaging to decode how the brain transforms sensory input into action. Their findings are reported in the Journal of Neuroscience. ...
Virtual pet leads to increase physical activity for kids, UGA research says
2014-05-14
Athens, Ga. – Placing children into a mixed reality—part virtual environment and part real world—has great potential for increasing their physical activity and decreasing their risk of obesity, according to University of Georgia researchers.
Sixty-one Georgia 4-H'ers, 9-12 years old, participated in a study designed to increase awareness and reduce childhood obesity. Participants set goals for the amount of physical activity they wanted to complete throughout the day over a course of three days. An activity monitor was worn to track their activity.
Children were split ...
Study shows tropical cyclone intensity shifting poleward
2014-05-14
MADISON, Wis. — The latitude at which tropical cyclones reach their greatest intensity is gradually shifting from the tropics toward the poles at rates of about 33 to 39 miles per decade, according to a study published today (May 14, 2014) in the journal Nature.
The new study was led by Jim Kossin, a National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center scientist stationed at the University of Wisconsin-Madison's Cooperative Institute for Meteorological Satellite Studies. The research documents a poleward migration of storm intensity in ...
NIH takes action on sex/gender in cell and animal studies
2014-05-14
What:
NIH leadership is available to answer questions from reporters about new policies that will be published online Wednesday in Nature to ensure that sex is treated as a fundamental variable in the preclinical biomedical research that it funds.
Article: NIH takes action on sex/gender in cell and animal studies. Nature. Clayton, J.A. & Collins, F.S.. Published online May 14, 2014.
Spokesperson:
Janine Austin Clayton, M.D., NIH Associate Director for Research on Women's Health, Director for the NIH Office of Research on Women's Health
INFORMATION:
Contact: To ...
Study: Dangerous storms peaking further north, south than in past
2014-05-14
Powerful, destructive tropical cyclones are now reaching their peak intensity farther from the equator and closer to the poles, according to a new study co-authored by an MIT scientist.
The results of the study, published today in the journal Nature, show that over the last 30 years, tropical cyclones — also known as hurricanes or typhoons — are moving poleward at a rate of about 33 miles per decade in the Northern Hemisphere and 38 miles per decade in the Southern Hemisphere.
"The absolute value of the latitudes at which these storms reach their maximum intensity seems ...
Possible new plan of attack for opening and closing the blood-brain barrier
2014-05-14
Like a bouncer at an exclusive nightclub, the blood-brain barrier allows only select molecules to pass from the bloodstream into the fluid that bathes the brain. Vital nutrients get in; toxins and pathogens are blocked. The barrier also ensures that waste products are filtered out of the brain and whisked away.
The blood-brain barrier helps maintain the delicate environment that allows the human brain to thrive. There's just one problem: The barrier is so discerning, it won't let medicines pass through. Researchers haven't been able to coax it to open up because they ...
Tropical cyclone 'maximum intensity' is shifting toward poles
2014-05-14
Over the past 30 years, the location where tropical cyclones reach maximum intensity has been shifting toward the poles in both the northern and southern hemispheres at a rate of about 35 miles, or one-half a degree of latitude, per decade according to a new study, The Poleward Migration of the Location of Tropical Cyclone Maximum Intensity, published tomorrow in Nature.
As tropical cyclones move into higher latitudes, some regions closer to the equator may experience reduced risk, while coastal populations and infrastructure poleward of the tropics may experience increased ...