(Press-News.org) When a supernova – the explosion of a distant star —was discovered last year, astrophysicists, with the help of telescopes around the globe, rushed to observe the fireworks. In its dramatic dying flares, this star – a rare type over 10 times the mass of our sun – can tell us something about the life of these fascinating cosmic bodies, as well as helping paint the picture of how all the heavier elements in the universe are formed.
To understand the star that produced the supernova, the researchers identified the mix of elements that was thrown off right before the explosion began. Prof. Avishay Gal-Yam of the Weizmann Institute's Particle Physics and Astrophysics Department explains that the star can be identified by the proportion of such elements as carbon, oxygen and nitrogen detected in the material ejected into space. These elements are created in the nuclear fusion that powers the stars. In our own sun, hydrogen, the lightest atom, fuses to make helium and stops there; but in the massive, hot stars, fusion continues as helium atoms unite to form heavier elements – up to iron.
Scientists believe that such stars are layered like onions: The heaviest elements, for example iron, are located in the core while the lighter ones make up the outermost layers. At the stars' outermost edges are stellar winds that blow the material found there out to space. In stars like the one that exploded the wind is so forceful, it can throw off a mass equal to that of our sun every 10,000 years. At some point in the star's life, the lightweight hydrogen making up its outer layer runs out, and it begins tossing out its helium, oxygen, carbon and nitrogen.
Somewhere under the surface is a layer where hydrogen, helium and the heavier elements all meet. This layer must be high enough to hold hydrogen but still hot enough to produce the extreme temperatures needed for nuclear fusion. Scientists are interested in this layer, as it is the place in which nitrogen is formed. As opposed to carbon, with six protons (three fused helium atoms), or oxygen, with eight (four heliums), nitrogen has an odd number of protons – seven. That means it must be the result of fusion between even and odd atoms, for example, three heliums and a hydrogen. So measuring the quantities of nitrogen could reveal what lies underneath the skin of such stars.
While the wind sweeps away the star's outer layers, its core continues to amass iron until it becomes so heavy it is no longer stable. At that point, the core collapses in a sudden, violent motion, hurling the outer layers off to produce the bright supernova we observe.
Detecting the elements ejected in the stellar wind just before the explosion could only be accomplished within a small window of time – up to a day or so after the terminal blast. This is because intense radiation produced by the explosion shock strips electrons from their atoms. Telescopes equipped with spectrographs aimed at the supernova can pick up the elements' spectra -- light that is emitted when the electrons are reunited with the atoms. But they must make their observations quickly before the quickly-expanding debris from the explosion sweep up the more tenuous remnants of the wind and erase this last trace of the dying star.
The race to observe the spectra of the supernova's wind began with the robotic telescopes at the Palomar observatory in California, a part of the iPTF project led by Prof. Shri Kulkarni of the California Institute of Technology (Caltech). These are programmed to find transient events – sudden changes in the night sky that could be new supernovae – and alert team members about the sightings. Halfway around the world, Dr. Iair Arcavi, then a doctoral student in Gal-Yam's group, received the notification. While researchers in the US slept, he assessed the finding, realized its significance, and contacted Dr. Assaf Horesh, then a postdoctoral fellow at Caltech (who has since joined the Weizmann team). Horesh then conducted spectroscopic observations at the Keck observatory in Hawaii, which is farther west than Palomar and could thus extend the nighttime viewing of the supernova. Acting quickly, he managed to record the emission spectra of the material thrown to the wind a mere 15 hours after the star exploded.
Working backward from the post-blast observations, Gal-Yam, Arcavi, Horesh and their colleagues assessed the recorded spectra and showed that the star that had exploded indeed had a nitrogen-rich wind, similar to those of the so-called Wolf-Rayet stars we know in our galaxy. This is the first time, says Gal-Yam, that this has been done. Now that the team has shown that the combination of efficient global organization and the mobilization of telescopes around the world can work to capture such fleeting events, they hope that further sightings of infant supernova explosions will be possible. Understanding how these stars live and die is important, he says, not just because it gives us a window on the workings of the universe. "All the heavier elements in the universe – those with a mass larger than that of helium – are created in the fusion furnaces of large stars and dispersed through supernova explosions. So many questions – about the origins and the relative abundance of different elements – go back to these processes taking place throughout the cosmos."
INFORMATION:
The intermediate Palomar Transient Factory (iPTF) — led by the California Institute of Technology (Caltech) — started searching the skies for certain types of stars and related phenomena this past February. The iPTF was built on the legacy of the Palomar Transient Factory (PTF), designed in 2008 to systematically chart the transient sky by using a robotic observing system mounted on the 48-inch Samuel Oschin Telescope on Palomar Mountain near San Diego, California. iPTF is a scientific collaboration of the California Institute of Technology, Los Alamos National Laboratory, the University of Wisconsin, Milwaukee, the Oskar Klein Center, the Weizmann Institute of Science, the TANGO Program of the University System of Taiwan, and the Kavli Institute for the Physics and Mathematics of the Universe.
Dr. Avishay Gal Yam's research is supported by the Helen and Martin Kimmel Award for Innovative Investigation; the Nella and Leon Benoziyo Center for Astrophysics; and the Peter and Patricia Gruber Awards.
The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.
Weizmann Institute news releases are posted on the World Wide Web at
http://wis-wander.weizmann.ac.il/, and are also available at http://www.eurekalert.org/
Blowing in the (stellar) wind
Researchers analyze the elements emitted from an unusual star just before it exploded
2014-05-21
ELSE PRESS RELEASES FROM THIS DATE:
Panel of 11 genes predicts alcoholism risk, gives new insights into biology of the disease
2014-05-21
INDIANAPOLIS -- A group of 11 genes can successfully predict whether an individual is at increased risk of alcoholism, a research team from the United States and Germany reported Tuesday.
"This powerful panel of just 11 genes successfully identified who has problems with alcohol abuse and who does not in tests in three patient populations on two continents, in two ethnicities and in both genders," said Alexander B. Niculescu III, M.D., Ph.D., principal investigators and associate professor of psychiatry and medical neuroscience at the Indiana University School of Medicine. ...
A new strategy for diabetes treatment
2014-05-21
With the discovery of a compound that can slow the degradation of insulin in animals, scientists at Harvard have opened the door to a potential new treatment for diabetes.
The new approach, described by Professor of Chemistry and Chemical Biology David Liu and Associate Professor of Chemistry and Chemical Biology Alan Saghatelian, uses a newly discovered compound to inhibit insulin degrading enzyme (IDE). Inhibiting IDE in mice, they show, elevates insulin levels and promotes insulin signaling in vivo. Eventually, the use of this compound in patients may help maintain ...
Confirmed: Stellar behemoth self-destructs in a Type IIb supernova
2014-05-21
Our Sun may seem pretty impressive: 330,000 times as massive as Earth, it accounts for 99.86 percent of the Solar System's total mass; it generates about 400 trillion trillion watts of power per second; and it has a surface temperature of about 10,000 degrees Celsius. Yet for a star, it's a lightweight.
The real cosmic behemoths are Wolf-Rayet stars, which are more than 20 times as massive as the Sun and at least five times as hot. Because these stars are relatively rare and often obscured, scientists don't know much about how they form, live and die. But this is changing, ...
Soil bacteria may provide clues to curbing antibiotic resistance
2014-05-21
Drug-resistant bacteria annually sicken 2 million Americans and kill at least 23,000. A driving force behind this growing public health threat is the ability of bacteria to share genes that provide antibiotic resistance.
Bacteria that naturally live in the soil have a vast collection of genes to fight off antibiotics, but they are much less likely to share these genes, a new study by researchers at Washington University School of Medicine in St. Louis has revealed. The findings suggest that most genes from soil bacteria are not poised to contribute to antibiotic resistance ...
New technique reveals supernova progenitor
2014-05-21
Washington, D.C.—Wolf-Rayet stars are very large and very hot. Astronomers have long wondered whether Wolf-Rayet stars are the progenitors of certain types of supernovae. New work from the Palomar Transient Factory team, including Carnegie's Mansi Kasliwal, is homing in on the answer. They have identified a Wolf-Rayet star as the likely progenitor of a recently exploded supernova. This work is published by Nature.
Wolf-Rayet stars are notable for having strong stellar winds and being deficient in hydrogen when compared with other stars. Taken together, these two factors ...
Study shows image fusion-guided biopsy improves accuracy of prostate cancer diagnosis
2014-05-21
NEW HYDE PARK, NY – A recent study by investigators from LIJ Medical Center demonstrated that using magnetic resonance imaging (MRI) in men with an elevated prostate specific antigen (PSA) resulted in a prostate cancer detection rate that was twice as high as data reported in the March 1999 Prostate journal that analyzed men undergoing the standard 12-core biopsy with an elevated PSA. Physicians in the recent trial used a targeted approach to evaluate prostate cancer that combines MR imaging and transrectal ultrasound fusion guided prostate biopsy.
Given the limitations ...
Too cute to resist: Do whimsical products make consumers overspend?
2014-05-21
Babies are cute. Kittens are cute. But for some people, products that emphasize baby features like chubby cheeks and large eyes cause them to be more careful and restrained. According to a new study in the Journal of Consumer Research, products that are cute in a playful and whimsical way can bring out more indulgent behavior.
"We were not convinced that all cute products would lead to the restrained behavior that stems from baby-cuteness. Our research examined whether there are indeed different types of cuteness, and if these differences could lead to more or less indulgent ...
Buying a BMW: How do social expectations influence your purchases?
2014-05-21
People who drive BMWs and wear expensive suits must surely occupy roles of power and authority. According to a new study in the Journal of Consumer Research, when we can separate societal expectations of power from how power makes us feel, we have better control over what it means to be powerful.
"When a person is placed into a powerless or powerful role, they sometimes conform to the expectations of that role. But when they are focused on the internal feeling of having or lacking power, we observed the opposite patterns of behavior," write authors Derek D. Rucker (Kellogg ...
What makes things cool? When breaking the rules can boost your cool factor
2014-05-21
Coolness helps sell everything from fashion and music to electronics and cigarettes. According to a new study in the Journal of Consumer Research, people and brands become cool by understanding what is considered normal, obeying the rules considered necessary, and then diverging from the rules considered expendable.
"Our research explores how brands and people become cool in the eyes of consumers. We reasoned that brands could become cool by breaking rules that seemed unnecessary or unfair, but not by breaking legitimate rules," write authors Caleb Warren (Texas A&M University) ...
The brand tourism effect: When do lower status consumers boost luxury brands?
2014-05-21
When people purchase luxury items like expensive watches and high-end automobiles, they often consider themselves members of a select group of consumers. According to a new study in the Journal of Consumer Research, when outsiders show an interest in a luxury brand, they help improve its overall value.
"Just as tourists boost the pride of citizens toward their home country and reinforce the attractiveness and desirability of the place they visit, brand tourists (as fans of the brand) inspire feelings of membership pride and enhance brand image," write authors Silvia Bellezza ...
LAST 30 PRESS RELEASES:
Singles differ in personality traits and life satisfaction compared to partnered people
President Biden signs bipartisan HEARTS Act into law
Advanced DNA storage: Cheng Zhang and Long Qian’s team introduce epi-bit method in Nature
New hope for male infertility: PKU researchers discover key mechanism in Klinefelter syndrome
Room-temperature non-volatile optical manipulation of polar order in a charge density wave
Coupled decline in ocean pH and carbonate saturation during the Palaeocene–Eocene Thermal Maximum
Unlocking the Future of Superconductors in non-van-der Waals 2D Polymers
Starlight to sight: Breakthrough in short-wave infrared detection
Land use changes and China’s carbon sequestration potential
PKU scientists reveals phenological divergence between plants and animals under climate change
Aerobic exercise and weight loss in adults
Persistent short sleep duration from pregnancy to 2 to 7 years after delivery and metabolic health
Kidney function decline after COVID-19 infection
Investigation uncovers poor quality of dental coverage under Medicare Advantage
Cooking sulfur-containing vegetables can promote the formation of trans-fatty acids
How do monkeys recognize snakes so fast?
Revolutionizing stent surgery for cardiovascular diseases with laser patterning technology
Fish-friendly dentistry: New method makes oral research non-lethal
Call for papers: 14th Asia-Pacific Conference on Transportation and the Environment (APTE 2025)
A novel disturbance rejection optimal guidance method for enhancing precision landing performance of reusable rockets
New scan method unveils lung function secrets
Searching for hidden medieval stories from the island of the Sagas
Breakthrough study reveals bumetanide treatment restores early social communication in fragile X syndrome mouse model
Neuroscience leader reveals oxytocin's crucial role beyond the 'love hormone' label
Twelve questions to ask your doctor for better brain health in the new year
Microelectronics Science Research Centers to lead charge on next-generation designs and prototypes
Study identifies genetic cause for yellow nail syndrome
New drug to prevent migraine may start working right away
Good news for people with MS: COVID-19 infection not tied to worsening symptoms
Department of Energy announces $179 million for Microelectronics Science Research Centers
[Press-News.org] Blowing in the (stellar) windResearchers analyze the elements emitted from an unusual star just before it exploded