(Press-News.org) Researchers at the University of California, San Diego have found that DNA packs more easily into the tight confines of a virus when given a chance to relax, they report in a pair of papers to be published in in the early edition of the Proceedings of the National Academy of Sciences the week of May 26 and the May 30 issue of Physical Review Letters.
DNA is a long, unwieldy molecule that tends to repel itself because it is negatively charged, yet it can spool tightly. Within the heads of viruses, DNA can be packed to near crystalline densities, crammed in by a molecular motor.
"These are among the most powerful molecular motors we know of," says Douglas Smith, a professor of physics whose group studies them.
Within an infected cell, viruses assemble in a matter of minutes. Smith's group studies the process by isolating components of this system to watch single molecules in action.
They attach the empty head of a single virus, along with the molecular motor, to a microscopic bead that can be moved about using a laser. To another bead, they tether a molecule of viral DNA.
"It's like fishing," Smith says. "We dangle a DNA molecule in front of the viral motor. If we're lucky, the motor grabs the DNA and starts pulling it in."
Packaging proceeds in fits and starts, with slips and pauses along the way. These pauses increase, along with forces the motor counters, as the viral head becomes full.
Scientists who model this process have had to make assumptions about the state of the DNA within. An open question is whether the DNA is in its lowest energy state, that is at equilibrium, or in a disordered configuration.
"In confinement, it could be forming all kinds of knots and tangles," said Zachary Berndsen, a graduate student in biochemistry who works with Smith and is the lead author of the PNAS paper.
To figure this out, Berndsen stalled the motor by depriving it of chemical energy, and found that packaging rates picked up when the motor restarted. The longer the stall, the greater the acceleration.
DNA takes more than 10 minutes to fully relax inside the confines of a viral head where there's little wiggle room, the team found. That's 60,000 times as long as it takes unconfined DNA to relax.
"How fast this virus packages DNA is determined by physics more than chemistry," Smith said.
DNA's tendency to repel itself due to its negative charge may actually facilitate the relaxation. In related experiments, the researchers added spermidine, a positively charged molecule that causes DNA in solution to spool up.
"You might think the stickiness would enhance packing, but we find that the opposite is true," said Nicholas Keller, the lead author of this second report, published in Physical Review Letters.
Countering the negative charges, particularly to the point of making the DNA attractive to itself, actually hindered the packaging of DNA.
"The DNA can get trapped into conformations that just stop the motor," Keller said.
"We tend to think of DNA for its information content, but living systems must also accommodate the physical properties of such a long molecule," Berndsen said. "Viruses and cells have to deal with the forces involved."
Beyond a clearer understanding of how viruses operate, the approach offers a natural system that is a model for understanding and studying the physics of long polymers like DNA in confined spaces. The insights could also inform biotechnologies that enclose long polymers within minuscule channels and spheres in nanscale devices.
INFORMATION:
Shelley Grimes and Paul Jardine, microbiologists at the University of Minnesota co-authored both papers. Damian delToro, a graduate student in physics at UC San Diego, co-authored the paper published by Physical Review Letters.
The National Science Foundation and the National Institute of General Medical Sciences funded the work. END
Relaxation helps pack DNA into a virus
2014-05-26
ELSE PRESS RELEASES FROM THIS DATE:
Breakthrough shows how DNA is 'edited' to correct genetic diseases
2014-05-26
An international team of scientists has made a major step forward in our understanding of how enzymes 'edit' genes, paving the way for correcting genetic diseases in patients.
Researchers at the Universities of Bristol, Münster and the Lithuanian Institute of Biotechnology have observed the process by which a class of enzymes called CRISPR – pronounced 'crisper' – bind and alter the structure of DNA.
The results, published in the Proceedings of the National Academy of Sciences (PNAS) today, provide a vital piece of the puzzle if these genome editing tools are ultimately ...
Sex-specific changes in cerebral blood flow begin at puberty, Penn study finds
2014-05-26
PHILADELPHIA – Puberty is the defining process of adolescent development, beginning a cascade of changes throughout the body, including the brain. Penn Medicine researchers have discovered that cerebral blood flow (CBF) levels decreased similarly in males and females before puberty, but saw them diverge sharply in puberty, with levels increasing in females while decreasing further in males, which could give hints as to developing differences in behavior in men and women and sex-specific pre-dispositions to certain psychiatric disorders. Their findings are available in Proceedings ...
A mechanism of how biodiversity arises
2014-05-26
AMHERST, Mass. – A new study of how biodiversity arises, by evolutionary biologists at the University of Massachusetts Amherst, shows how a mutation in a single gene during development can lead to different consequences not only in how animals' skull and jaw are shaped, but how this leads to different feeding strategies to exploit different ecological niches.
The study in the cichlid fish model by Yinan Hu, a doctoral student in organismic and evolutionary biology, with his advisor Craig Albertson, is among the first to address how a single genetic change can influence ...
Implications of mandatory flu vaccinations for health-care workers
2014-05-26
Employers planning to implement mandatory influenza vaccination policies for health care workers need to understand the implications, according to an analysis published in CMAJ (Canadian Medical Association Journal).
Vaccination rates among health care workers are less than 50%, well below the level necessary for herd immunity. Evidence indicates that vaccination of health care workers can benefit patient health, leading to a move by many to consider mandatory influenza vaccination as a condition of employment or to require employees to wear a mask during influenza season. ...
Neurons can use local stores for communication needs
2014-05-26
Researchers reveal that neurons can utilize a supremely localized internal store of calcium to initiate the secretion of neuropeptides, one class of signaling molecules through which neurons communicate with each other and with other cells. The study appears in The Journal of General Physiology.
Neuropeptides are released from neurons through a process that—like other secretory events—is triggered primarily by the influx of calcium into the neuron through voltage-gated channels. Although neuropeptides are stored in large dense core vesicles (LDCVs) that also contain ...
Fighting cancer with dietary changes
2014-05-26
(PHILADELPHIA) -- -- Calorie restriction, a kind of dieting in which food intake is decreased by a certain percentage, has been touted as way to help people live longer. New research suggests that there may be other benefits, including improving outcomes for women in breast cancer. According to a study published May 26th in Breast Cancer Research and Treatment, the triple negative subtype of breast cancer – one of the most aggressive forms – is less likely to spread, or metastasize, to new sites in the body when mice were fed a restricted diet.
"The diet turned on a ...
Novel drug target linked to insulin secretion and type 2 diabetes treatment
2014-05-26
This news release is available in French. A signal that promotes insulin secretion and reduces hyperglycemia in a type 2 diabetes animal model is enhanced by the inhibition of a novel enzyme discovered by CHUM Research Centre (CRCHUM) and University of Montreal researchers. The team is part of the Montreal Diabetes Research Center and their study, published recently in Cell Metabolism, was directed by researchers Marc Prentki and Murthy Madiraju.
Insulin is an important hormone in our body that controls glucose and fat utilization. Insufficient insulin release by the ...
Promising approach to slow brain degeneration in a model of Huntington's disease uncovered
2014-05-26
This news release is available in French. Research presented by Dr. Lynn Raymond, from the University of British Columbia, shows that blocking a specific class of glutamate receptors, called extrasynaptic NMDA receptors, can improve motor learning and coordination, and prevent cell death in animal models of Huntington disease. As Huntington disease is an inherited condition that can be detected decades before any clinical symptoms are seen in humans, a better understanding of the earliest changes in brain cell (neuronal) function, and the molecular pathways underlying ...
The Lancet Oncology: UN officials warn refugees are struggling to access cancer treatment
2014-05-26
A study published in The Lancet Oncology journal reveals a high demand for costly cancer treatment among refugees from the recent conflicts in Iraq and Syria, with host countries struggling to find the money and the medicine to treat their new patients. The findings have prompted calls from lead author Dr Paul Spiegel, the United Nations High Commissioner for Refugees (UNHCR) Chief Medical Expert, for innovative financing schemes to improve access to affordable high-quality cancer care for refugees.
In the first study of its kind, Spiegel and colleagues examined data ...
A new molecule for high-resolution cell imaging
2014-05-25
Like our own bodies, cells have their own skeletons called 'cytoskeletons' and are made of proteins instead of bones. These network-like structures maintain the cell's shape, provide mechanical support, and are involved in critical processes of the cell's lifecycle. The cytoskeleton is an object of intense scientific and medical research, which often requires being able to observe it directly in cells. Ideally, this would involve highly-fluorescent molecules that can bind cytoskeletal proteins with high specificity without being toxic to the cell. Publishing in Nature Methods, ...