(Press-News.org) A single-letter change in the genetic code is enough to generate blond hair in humans, in dramatic contrast to our dark-haired ancestors. A new analysis by Howard Hughes Medical Institute (HHMI) scientists has pinpointed that change, which is common in the genomes of Northern Europeans, and shown how it fine-tunes the regulation of an essential gene.
"This particular genetic variation in humans is associated with blond hair, but it isn't associated with eye color or other pigmentation traits," says David Kingsley, an HHMI investigator at Stanford University who led the study. "The specificity of the switch shows exactly how independent color changes can be encoded to produce specific traits in humans." Kingsley and his colleagues published their findings in the June 1, 2014, issue of the journal Nature Genetics.
Kingsley says a handful of genes likely determine hair color in humans, however, the precise molecular basis of the trait remains poorly understood. But Kingsley's discovery of the genetic hair-color switch didn't begin with a deep curiosity about golden locks. It began with fish.
For more than a decade, Kingsley has studied the three-spined stickleback, a small fish whose marine ancestors began to colonize lakes and streams at the end of the last Ice Age. By studying how sticklebacks have adapted to habitats around the world, Kingsley is uncovering evidence of the molecular changes that drive evolution. In 2007, when his team investigated how different populations of the fish had acquired their skin colors, they discovered that changes in the same gene had driven changes in pigmentation in fish found in various lakes and streams throughout the world. They wondered if the same held true not just in the numerous bodies of water in which sticklebacks have evolved, but among other species.
Genomic surveys by other groups had revealed that the gene – Kit ligand – is indeed evolutionarily significant among humans. "The very same gene that we found controlling skin color in fish showed one of the strongest signatures of selection in different human populations around the world," Kingsley says. His team went on to show that in humans, different versions of Kit ligand were associated with differences in skin color.
Furthermore, in both fish and humans, the genetic changes associated with pigmentation differences were distant from the DNA that encodes the Kit ligand protein, in regions of the genome where regulatory elements lie. "It looked like regulatory mutations in both fish and humans were changing pigment," Kingsley says.
Kingsley's subsequent stickleback studies have shown that when new traits evolve in different fish populations, changes in regulatory DNA are responsible about 85 percent of the time. Genome-wide association studies have linked many human traits to changes in regulatory DNA, as well. Tracking down specific regulatory elements in the vast expanse of the genome can be challenging, however.
"We have to be kind of choosy about which regulatory elements we decide to zoom in on," Kingsley says. "We thought human hair color was at least as interesting as stickleback skin color." So his team focused its efforts on a human pigmentation trait that has long attracted attention in history, art, and popular culture.
Kit ligand encodes a protein that aids the development of pigment-producing cells, so it made sense that changing its activity could affect hair or skin color. But the Kit ligand protein also plays a host of other roles throughout the body, influencing the behavior of blood stem cells, sperm or egg precursors, and neurons in the intestine. Kingsley wanted to know how alterations to the DNA surrounding this essential gene could drive changes in coloration without comprising Kit ligand's other functions.
Catherine Guenther, an HHMI research specialist in Kingsley's lab, began experiments to search for regulatory switches that might specifically control hair color. She snipped out segments of human DNA from the region implicated in previous blond genetic association studies, and linked each piece to a reporter gene that produces a telltale blue color when it is switched on. When she introduced these into mice, she found that one piece of DNA switched on gene activity only in developing hair follicles.
"When we found the hair follicle switch, we could then ask what's different between blonds and brunettes in northern Europe," Kingsley said. Examining the DNA in that regulatory segment, they found a single letter of genetic code that differed between individuals with different hair colors.
Their next step was to test each version's effect on the activity of the Kit ligand gene. Their preliminary experiments, conducted in cultured cells, indicated that placing the gene under the control of the "blond" switch reduced its activity by about 20 percent, as compared to the "brunette" version of the switch. The change seemed slight, but Kingsley and Guenther suspected they had identified the critical point in the DNA sequence.
The scientists next engineered mice with a Kit ligand gene placed under the control of the brunette or the blond hair enhancer. Using technology developed by Liqun Luo, who is also an HHMI investigator at Stanford, they were able to ensure that each gene was inserted in precisely the same way, so that a pair of mice differed only by the single letter in the hair follicle switch—one carrying the ancestral version, the other carrying the blond version.
"Sure enough, when you look at them, that one base pair is enough to lighten the hair color of the animals, even though it is only a 20 percent difference in gene expression," Kingsley says. "This is a good example of how fine-tuned regulatory differences may be to produce different traits. The genetic mechanism that controls blond hair doesn't alter the biology of any other part of the body. It's a good example of a trait that's skin deep—and only skin deep."
Given Kit ligand's range of activities throughout the body, Kingsley says many such regulatory elements are likely scattered throughout the DNA that surrounds the gene. "We think the genome is littered with switches," he says. And like the hair color switch, many of the regulatory elements that control Kit ligand and other genes may subtly adjust activity. "A little up or a little down next to key genes–rather than on or off–is enough to produce significant differences. The trick is, which switches have changed to produce which traits?
"Despite the challenges, we now clearly have the methods to link traits to particular DNA alterations. I think you will see a lot more of this type of study in the future, leading to a much better understanding of both the molecular basis of human diversity and of the susceptibility or resistance to many common diseases," Kingsley said.
INFORMATION:
A single DNA tweak leads to blond hair
2014-06-01
ELSE PRESS RELEASES FROM THIS DATE:
How to erase a memory -- and restore it
2014-06-01
Researchers at the University of California, San Diego School of Medicine have erased and reactivated memories in rats, profoundly altering the animals' reaction to past events.
The study, published in the June 1 advanced online issue of the journal Nature, is the first to show the ability to selectively remove a memory and predictably reactivate it by stimulating nerves in the brain at frequencies that are known to weaken and strengthen the connections between nerve cells, called synapses.
"We can form a memory, erase that memory and we can reactivate it, at will, ...
Newly identified brain cancer mutation will aid drug development
2014-06-01
DURHAM, N.C. – A collaborative effort between Duke Medicine researchers and neurosurgeons and scientists in China has produced new genetic insights into a rare and deadly form of childhood and young adult brain cancer called brainstem glioma.
The researchers identified a genetic mutation in the tumor cells that plays a role in both the growth and the death of a cell. Additionally, the mutation to the newly identified gene may also contribute to the tumor's resistance to radiation.
The findings, published online in the journal Nature Genetics on June 1, 2014, provide ...
Lasers create table-top supernova
2014-06-01
Laser beams 60,000 billion times more powerful than a laser pointer have been used to recreate scaled supernova explosions in the laboratory as a way of investigating one of the most energetic events in the Universe.
Supernova explosions, triggered when the fuel within a star reignites or its core collapses, launch a detonation shock wave that sweeps through a few light years of space from the exploding star in just a few hundred years. But not all such explosions are alike and some, such as Cassiopeia A, show puzzling irregular shapes made of knots and twists.
To investigate ...
Smokers with gene defect have 1 in 4 chance of developing lung cancer
2014-06-01
Around a quarter of smokers who carry a defect in the BRCA2 gene will develop lung cancer at some point in their lifetime, a large-scale, international study reveals.
Scientists announce a previously unknown link between lung cancer and a particular BRCA2 defect, occurring in around 2 per cent of the population, in research published in Nature Genetics today (Sunday).
The defect in BRCA2 - best known for its role in breast cancer - increases the risk of developing lung cancer by about 1.8 times.
Smokers as a group have a high lifetime risk of around 13 per cent (16 ...
Shining a light on memory
2014-06-01
Using a flash of light, scientists have inactivated and then reactivated a memory in genetically engineered rats. The study, supported by the National Institutes of Health, is the first cause-and-effect evidence that strengthened connections between neurons are the stuff of memory.
"Our results add to mounting evidence that the brain represents a memory by forming assemblies of neurons with strengthened connections, or synapses, explained Roberto Malinow, M.D., Ph.D., of the University of California, San Diego (UCSD), a grantee of the NIH's National Institute of Mental ...
Study identifies new genetic cause of male reproductive birth defects
2014-06-01
HOUSTON – (June 1, 2014) – Baylor College of Medicine scientists defined a previously unrecognized genetic cause for two types of birth defects found in newborn boys, described in a report published today in the journal Nature Medicine.
"Cryptorchidism and hypospadias are among the most common birth defects but the causes are usually unknown," said Dr. Dolores Lamb, director of the Center for Reproductive Medicine at Baylor, professor and vice chair for research of urology and molecular and cellular biology at Baylor and lead author of the report.
Cryptorchidism is ...
'Quadrapeutics' works in preclinical study of hard-to-treat tumors
2014-06-01
HOUSTON -- (June 1, 2014) -- The first preclinical study of a new Rice University-developed anti-cancer technology found that a novel combination of existing clinical treatments can instantaneously detect and kill only cancer cells -- often by blowing them apart -- without harming surrounding normal organs. The research, which is available online this week Nature Medicine, reports that Rice's "quadrapeutics" technology was 17 times more efficient than conventional chemoradiation therapy against aggressive, drug-resistant head and neck tumors.
The work was conducted by ...
CSIC develops a software able to identify and track an specific individual within a group
2014-06-01
Researchers from the Spanish National Research Council (CSIC) have developed a software based on the discovery of some algorithms that enable the identification of each individual, therefore allowing their tracking within the group. Thus, the door opens to the quantitative study of the rules of social interaction for many species. The work has been published in the Nature Methods journal.
Animals that move in groups make decisions considering what other members of their community do. To find out the rules of these interactions, researchers record monitoring videos through ...
Graphene's multi-colored butterflies
2014-06-01
Writing in Nature Physics, a large international team led by Dr Artem Mishchenko and Sir Andre Geim from The University of Manchester shows that the electronic properties of graphene change dramatically if graphene is placed on top of boron nitride, also known as 'white graphite'.
One of the major challenges for using graphene in electronics applications is the absence of a band gap, which basically means that graphene's electrical conductivity cannot be switched off completely. Whatever researchers tried to do with the material so far, it remained highly electrically ...
Paired enzyme action in yeast reveals backup system for DNA repair
2014-06-01
The combined action of two enzymes, Srs2 and Exo1, prevents and repairs common genetic mutations in growing yeast cells, according to a new study led by scientists at NYU Langone Medical Center.
Because such mechanisms are generally conserved throughout evolution, at least in part, researchers say the findings suggest that a similar DNA repair kit may exist in humans and could serve as a target for controlling some cancers and treating a rare, enzyme-linked genetic disorder called Aicardi-Goutieres syndrome. The syndrome, an often fatal neurological condition, is found ...