(Press-News.org) Multi-wavelength observations of sunspots with the 1.6-meter telescope at Big Bear Solar Observatory (BBSO) in California and aboard NASA's IRIS spacecraft have produced new and intriguing images of high-speed plasma flows and eruptions extending from the Sun's surface to the outermost layer of the solar atmosphere, the corona. Operated by New Jersey Institute of Technology (NJIT), BBSO houses the largest ground-based telescope dedicated to solar research.
On June 2, NJIT researchers reported on the acquisition of these images at the 224th meeting of the American Astronomical Society (AAS), held in Boston, Massachusetts. The high-definition video acquired at BBSO provides unique 3D views of a sunspot, revealing rapidly rotating plasma rolls, powerful shocks, and widespread plasma eruptions driven by solar-energy flux and controlled by intense magnetic fields. These leading-edge observations show that sunspots are far more complex and dynamic than previously believed.
Sunspots, first seen by Galileo more than 400 years ago as dark blemishes on the Sun, are still one of the greatest mysteries of astronomy. It has been known for more than a century that sunspots are compact, concentrated magnetic fields and that they appear dark because the magnetism prevents heat from rising to the surface from the superhot interior. But why these magnetic fields become so concentrated and compacted in structures that remain stable for days and sometimes weeks in a very turbulent environment is a mystery.
Sunspots can be the size of Earth or as big as Jupiter. Typical sunspots are nearly round with a very dark and relatively "cold" umbra (7,000 degrees Fahrenheit compared to the 10,000-degree solar surface) surrounded by a less dark and warmer penumbra. However, there are no external forces on the Sun that could hold these giant magnetic structures together. They appear and are organized by their own induced forces. Understanding the processes of such self-organization in the hot turbulent plasma is of fundamental importance for physics and astrophysics.
Investigating sunspots is much more than a matter of curiosity and the desire to increase the fund of basic scientific knowledge. When sunspots that are close to each other have magnetic fields with opposite polarities, they can produce powerful flares and solar storms. On Earth, this can severely damage communications and power infrastructure. Similar but even more intense magnetic phenomena have been detected on other stars, which may be a factor hindering the development of life elsewhere in our Galaxy.
At the AAS meeting, the NJIT researchers presented video chronicling several hours in the life of an isolated sunspot that did not generate solar flares. But the roiling action revealed was a transformative view of sunspots as static-equilibrium structures maintaining a balance between magnetic force and gas pressure.
The telescope at BBSO that made these unparalleled observations possible was completed in 2009 under the leadership of Philip Goode, NJIT distinguished professor of physics and at the time director of the university's Center for Solar-Terrestrial Research. The telescope is equipped with adaptive optics that include a deformable mirror to compensate for the atmospheric distortion of images in real time. Images are captured with very fast cameras in 15-second "bursts" of 100 images, and then processed using a speckle reconstruction technique to improve sharpness.
The imaging and data-acquisition systems were developed by the BBSO engineering team led by Wenda Cao, NJIT associate professor of physics and the observatory's associate director. The data recorded is unique in that it comprises a long, uninterrupted series that allows researchers to look at a sunspot's life cycle and activity with unprecedented spatial resolution. Previously, only short series or snapshots with such resolution were available.
The sunspot data shared at the AAS meeting was obtained on September 29, 2013. The solar surface, the photosphere, was imaged using a red-light filter in the range of molecular TiO lines, to achieve the best contrast in the sunspot's umbra. Simultaneously, scanning the hydrogen H-alpha spectral line facilitated imaging at five different wavelengths. The H-alpha data yielded images of plasma flows at various layers in the solar atmosphere, enabling the NJIT researchers to obtain a dynamic 3D view of the sunspot. The BBSO data was compared with UV images of the high and hot atmosphere obtained by NASA's IRIS satellite for the same region. This joint observing program allows investigation of the origins of solar UV radiation.
The data as presented in the high-definition video shown at the meeting reveals small-scale activity of a generally "quiet" sunspot in unprecedented detail. Remarkably, the organization of small-scale substructures is comparable to that seen at larger scales, indicating the existence of large-scale dynamics which control the formation and stability of sunspots. In particular, the TiO images provide the first detailed view of the darkest regions of sunspots, revealing rapidly rotating convective rolls in the penumbra and similarly rotating relatively bright "umbral dots." The umbral dots form an evolving pattern clearly linked to the outer penumbra structure. Such evolution provides evidence for large-scale flows that probably play a key role in the self-organization and stability of sunspots.
The most prominent features in the Sun's chromosphere are periodic pulses — shocks generated by sunspots at intervals of about three minutes. The shocks, which travel into the high solar atmosphere with a speed of about 45,000 miles per hour, are observed by the IRIS spacecraft as UV flashes above the sunspot. The sunspot's umbra is covered by ubiquitous eruptions — plasma jets that may contribute to the shocks detected.
The most significant UV emissions and violent motion are observed above the area where the penumbra intrudes into the umbra, the so-called "light bridge." It is likely that this effect is related to anomalies in the sunspot's magnetic topology, and requires further investigation. Some of the most dramatic events are high-speed plasma jets originating from the penumbra, as well as the apparent chromospheric accretion of dense plasma sheets into the sunspot. The origin of the accretion flows is another puzzle.
Looking ahead, the NJIT researchers plan to use quantitative diagnostics to study plasma and magnetic-field properties through analysis of polarized solar light, and to integrate realistic numerical simulations performed on supercomputer systems into their work. Comparable simulations at the NASA Ames Research Center have revealed a magnetic self-organization process that caused a compact "mini-spot" magnetic structure to form through the interaction of vortex tubes below the visible solar surface.
INFORMATION:
Funding for this research has been provided by AFORS, NASA, NSF and NJIT.
For more information, including images and video, visit http://bbso.njit.edu.
BBSO contacts:
Alexander Kosovichev
sasha@bbso.njit.edu, (408) 239-6874
Vasyl Yurchyshyn,
vayur@bbso.njit.edu
Santiago Vargas Dominguez
svargas@bbso.njit.edu, (909) 496-9347
About NJIT
NJIT, New Jersey's science and technology university, enrolls 10,000 students pursuing bachelor's, master's and doctoral degrees in 120 programs. The university consists of six colleges: Newark College of Engineering, College of Architecture and Design, College of Science and Liberal Arts, School of Management, College of Computing Sciences and Albert Dorman Honors College. U.S. News & World Report's 2011 Annual Guide to America's Best Colleges ranked NJIT in the top tier of national research universities. NJIT is internationally recognized for being at the edge in knowledge in architecture, applied mathematics, wireless communications and networking, solar physics, advanced engineered particulate materials, nanotechnology, neural engineering and e-learning. Many courses and certificate programs, as well as graduate degrees, are available online through the Division of Continuing Professional Education.
Solving sunspot mysteries
2014-06-03
ELSE PRESS RELEASES FROM THIS DATE:
Complex neural circuitry keeps you from biting your tongue
2014-06-03
DURHAM, N.C. -- Eating, like breathing and sleeping, seems to be a rather basic biological task. Yet chewing requires a complex interplay between the tongue and jaw, with the tongue positioning food between the teeth and then moving out of the way every time the jaw clamps down to grind it up.
If the act weren't coordinated precisely, the unlucky chewer would end up biting more tongue than burrito.
Duke University researchers have used a sophisticated tracing technique in mice to map the underlying brain circuitry that keeps mealtime relatively painless. The study, ...
Climate engineering can't erase climate change
2014-06-03
Tinkering with climate change through climate engineering isn't going to help us get around what we have to do says a new report authored by researchers at six universities, including Simon Fraser University.
After evaluating a range of possible climate-altering approaches to dissipating greenhouse gases and reducing warming, the interdisciplinary team concluded there's no way around it. We have to reduce the amount of carbon being released into the atmosphere.
"Some climate engineering strategies look very cheap on paper. But when you consider other criteria, like ...
Fatty liver disease prevented in mice
2014-06-03
Studying mice, researchers have found a way to prevent nonalcoholic fatty liver disease, the most common cause of chronic liver disease worldwide. Blocking a path that delivers dietary fructose to the liver prevented mice from developing the condition, according to investigators at Washington University School of Medicine in St. Louis.
The study appears in a recent issue of the Journal of Biological Chemistry.
In people, nonalcoholic fatty liver disease often accompanies obesity, elevated blood sugar, high blood pressure and other markers of metabolic syndrome. Some ...
Researchers shut down a SARS cloaking system; findings could lead to SARS, MERS vaccines
2014-06-03
WEST LAFAYETTE, Ind. —A Purdue University-led research team has figured out how to disable a part of the SARS virus responsible for hiding it from the immune system; a critical step in developing a vaccine against the deadly disease.
The findings also have potential applications in the creation of vaccines against other coronaviruses, including MERS, said Andrew Mesecar, who led the research.
"This is a first step toward creating a weakened and safe virus for use in an attenuated live vaccine," said Mesecar, Purdue's Walther Professor of Cancer Structural Biology and ...
Study finds coordinated approach improves quality of primary care
2014-06-03
NEW YORK (June 2, 2014) -- Primary care doctors practicing in a model of coordinated, team-based care that leverages health information technology are more likely to give patients recommended preventive screening and appropriate tests than physicians working in other settings, according to research published today in the Annals of Internal Medicine. The study comparing quality of care by physicians using a delivery model known as the patient-centered medical home (PCMH) to care from physicians in non-PCMH practices provides evidence that the previously unproven but popular ...
Progress on detecting glucose levels in saliva
2014-06-03
PROVIDENCE, R.I. [Brown University] — Researchers from Brown University have developed a new biochip sensor that can selectively measure concentrations of glucose in a complex solution similar to human saliva. The advance is an important step toward a device that would enable people with diabetes to test their glucose levels without drawing blood.
The new chip makes use of a series of specific chemical reactions combined with plasmonic interferometry, a means of detecting chemical signature of compounds using light. The device is sensitive enough to detect differences ...
Hubble unveils a colorful view of the universe
2014-06-03
Prior to this survey, astronomers were in a curious position. They knew a lot about star formation occurring in nearby galaxies thanks to UV telescope facilities such as NASA's Galex observatory, which operated from 2003 to 2013. And, thanks to Hubble's near-infrared and visible capability, they had also studied star birth in the most distant galaxies. We see these distant galaxies in their most primitive stages due to the vast amount of time it takes their light to reach us.
However, between 5 and 10 billion light-years away from us -- corresponding to a time period ...
Story tips from the Department of Energy's Oak Ridge National Laboratory, June 2014
2014-06-03
BIOMETRICS – The eyes have it . . .
By discovering and quantifying the "limbus effect," Oak Ridge National Laboratory researchers have advanced the state of the art for human iris recognition systems. While the iris is a proven and reliable biometric for verification or identification, non-ideal images -- such as those captured off axis -- are problematic. Reasons include cornea refraction and the limbus effect, causing iris recognition performance to decrease and in many cases fail entirely. Now, using an anatomically accurate human eye model and some slick math, a ...
Experts recommend blood, urine testing to diagnose rare adrenal tumors
2014-06-03
Washington, DC—The Endocrine Society today issued a Clinical Practice Guideline (CPG) for the diagnosis and treatment of two types of rare adrenal tumors – pheochromocytomas and paragangliomas – that can raise the risk of cardiovascular disease and even death if left untreated.
The CPG, entitled "Pheochromocytoma and Paraganglioma: An Endocrine Society Clinical Practice Guideline," appeared in the June 2014 issue of the Journal of Clinical Endocrinology and Metabolism (JCEM), a publication of the Endocrine Society.
Pheochromocytomas are rare, usually noncancerous tumors ...
UGA ecologists provide close-up of coral bleaching event
2014-06-03
Athens, Ga. – New research by University of Georgia ecologists sheds light on exactly what happens to coral during periods of excessively high water temperatures. Their study, published in the journal Limnology and Oceanography, documents a coral bleaching event in the Caribbean in minute detail and sheds light on how it changed a coral's community of algae—a change that could have long-term consequences for coral health, as bleaching is predicted to occur more frequently in the future.
Millions of people around the world depend on coral reefs and the services they provide. ...