(Press-News.org) New genomic research led by UC San Francisco (UCSF) scientists reveals that two common gene variants that lead to longer telomeres, the caps on chromosome ends thought by many scientists to confer health by protecting cells from aging, also significantly increase the risk of developing the deadly brain cancers known as gliomas.
The genetic variants, in two telomere-related genes known as TERT and TERC, are respectively carried by 51 percent and 72 percent of the general population. Because it is somewhat unusual for such risk-conferring variants to be carried by a majority of people, the researchers propose that in these carriers the overall cellular robustness afforded by longer telomeres trumps the increased risk of high-grade gliomas, which are invariably fatal but relatively rare cancers.
The research was published online in Nature Genetics on June 8, 2014.
"There are clearly high barriers to developing gliomas, perhaps because the brain has special protection," said Margaret Wrensch, MPH, PhD, the Stanley D. Lewis and Virginia S. Lewis Endowed Chair in Brain Tumor Research at UCSF and senior author of the new study. "It's not uncommon for people diagnosed with glioma to comment, 'I've never been sick in my life.'"
In a possible example of this genetic balancing act between risks and benefits of telomere length, in one dataset employed in the current study—a massive genomic analysis of telomere length in nearly 40,000 individuals conducted at the University of Leicester in the United Kingdom—shorter telomeres were associated with a significantly increased risk of cardiovascular disease.
"Though longer telomeres might be good for you as a whole person, reducing many health risks and slowing aging, they might also cause some cells to live longer than they're supposed to, which is one of the hallmarks of cancer," said lead author Kyle M. Walsh, PhD, assistant professor of neurological surgery and a member of the Program in Cancer Genetics at UCSF's Helen Diller Family Comprehensive Cancer Center.
In the first phase of the new study, researchers at UCSF and The Mayo Clinic College of Medicine analyzed genome-wide data from 1,644 glioma patients and 7,736 healthy control individuals, including some who took part in The Cancer Genome Atlas project sponsored by the National Cancer Institute and National Human Genome Research Institute. This work confirmed a link between TERT and gliomas that had been made in previous UCSF research, and also identified TERC as a glioma risk factor for the first time.
Since both genes have known roles in regulating the action of telomerase, the enzyme that maintains telomere length, the research team combed the University of Leicester data, and they found that the same TERT and TERC variants associated with glioma risk were also associated with greater telomere length.
UCSF's Elizabeth Blackburn, PhD, shared the 2009 Nobel Prize in Physiology or Medicine for her pioneering work on telomeres and telomerase, an area of research she began in the mid-1970s. In the ensuing decades, untangling the relationships between telomere length and disease has proved to be complex.
In much research, longer telomeres have been considered a sign of health—for example, Blackburn and others have shown that individuals exposed to chronic stressful experiences have shortened telomeres. But because cancer cells promote their own longevity by maintaining telomere length, drug companies have searched for drugs to specifically target and block telomerase in tumors in the hopes that cancer cells will accumulate genetic damage and die.
Walsh said the relevance of the new research should extend beyond gliomas, since TERT variants have also been implicated in lung, prostate, testicular and breast cancers, and TERC variants in leukemia, colon cancer and multiple myeloma. Variants in both TERT and TERC have been found to increase risk of idiopathic pulmonary fibrosis, a progressive disease of the lungs.
In some of these cases, the disease-associated variants promote longer telomeres, and in others shorter telomeres, suggesting that "both longer and shorter telomere length may be pathogenic, depending on the disease under consideration," the authors write.
INFORMATION:
In addition to the Mayo Clinic and Leicester University teams, Wrensch and Walsh were joined by colleagues from University Medical Center Groningen in Germany. Other UCSF authors include Ivan V. Smirnov, PhD; Terri Rice, MPH; Helen M. Hansen; Annette M. Molinaro, PhD; Lucie S. McCoy, MPH; Paige M. Bracci, PhD, MPH; Belinda S. Cabriga; Melike Pekmezci, MD; Shichun Zheng, MD; Joseph L. Wiemels, PhD; Tarik Tihan, MD, PhD; Mitchel S. Berger, MD; Susan M. Chang, MD; Michael D. Prados, MD; and John K. Wiencke, PhD. Alexander R. Pico, PhD, of the Gladstone Institutes also took part in the research, as did members of the ENGAGE Consortium Telomere Group.
Research conducted at UCSF was supported by the National Institutes of Health; the National Brain Tumor Foundation; the UCSF Lewis Chair in Brain Tumor Research; the UCSF Robert Magnin Newman chair in Neuro-Oncology; and by donations from families and friends of John Berardi, Helen Glaser, Elvera Olsen, Raymond E. Cooper and William Martinusen.
UC San Francisco (UCSF), now celebrating the 150th anniversary of its founding, is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic, biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital San Francisco. Please visit http://www.ucsf.edu.
Longer telomeres linked to risk of brain cancer
A double-edged sword, gene variants may promote overall health while increasing risk of gliomas
2014-06-08
ELSE PRESS RELEASES FROM THIS DATE:
New molecule enables quick drug monitoring
2014-06-08
Monitoring the drug concentration in patients is critical for effective treatment, especially in cases of cancer, heart disease, epilepsy and immunosuppression after organ transplants. However, current methods are expensive, time-consuming, and require dedicated personnel and infrastructure away from the patient. Publishing in Nature Chemical Biology, scientists at EPFL introduce novel light-emitting sensor proteins that can quickly and simply show how much drug is in a patient's bloodstream by changing the color of their light. The method is so simple that it could be ...
Retracing early cultivation steps: Lessons from comparing citrus genomes
2014-06-08
Citrus is the world's most widely cultivated fruit crop. In the U.S. alone, the citrus crop was valued at over $3.1 billion in 2013. Originally domesticated in Southeast Asia thousands of years ago before spreading throughout Asia, Europe, and the Americas via trade, citrus is now under attack from citrus greening, an insidious emerging infectious disease that is destroying entire orchards. To help defend citrus against this disease and other threats, researchers worldwide are mobilizing to apply genomic tools and approaches to understand how citrus varieties arose and ...
Warming climates intensify greenhouse gas given out by oceans
2014-06-08
Rising global temperatures could increase the amount of carbon dioxide naturally released by the world's oceans, fuelling further climate change, a study suggests.
Fresh insight into how the oceans can affect CO2 levels in the atmosphere shows that rising temperatures can indirectly increase the amount of the greenhouse gas emitted by the oceans.
Scientists studied a 26,000-year-old sediment core taken from the Gulf of California to find out how the ocean's ability to take up atmospheric CO2 has changed over time.
They tracked the abundance of the key elements silicon ...
Study reveals rats show regret, a cognitive behavior once thought to be uniquely human
2014-06-08
New research from the Department of Neuroscience at the University of Minnesota reveals that rats show regret, a cognitive behavior once thought to be uniquely and fundamentally human.
Research findings were recently published in Nature Neuroscience.
To measure the cognitive behavior of regret, A. David Redish, Ph.D., a professor of neuroscience in the University of Minnesota Department of Neuroscience, and Adam Steiner, a graduate student in the Graduate Program in Neuroscience, who led the study, started from the definitions of regret that economists and psychologists ...
A tiny molecule may help battle depression
2014-06-08
Levels of a small molecule found only in humans and in other primates are lower in the brains of depressed individuals, according to researchers at McGill University and the Douglas Institute. This discovery may hold a key to improving treatment options for those who suffer from depression.
Depression is a common cause of disability, and while viable medications exist to treat it, finding the right medication for individual patients often amounts to trial and error for the physician. In a new study published in the journal Nature Medicine, Dr. Gustavo Turecki, a psychiatrist ...
Targeting tumors using silver nanoparticles
2014-06-08
(Santa Barbara, Calif.) — Scientists at UC Santa Barbara have designed a nanoparticle that has a couple of unique — and important — properties. Spherical in shape and silver in composition, it is encased in a shell coated with a peptide that enables it to target tumor cells. What's more, the shell is etchable so those nanoparticles that don't hit their target can be broken down and eliminated. The research findings appear today in the journal Nature Materials.
The core of the nanoparticle employs a phenomenon called plasmonics. In plasmonics, nanostructured metals such ...
Quick getaway: How flies escape looming predators
2014-06-08
When a fruit fly detects an approaching predator, it takes just a fraction of a second to launch itself into the air and soar gracefully to safety—but there's not always time for that. Some threats demand a quicker getaway, even if things get a little clumsy. New research from scientists at the Howard Hughes Medical Institute's Janelia Research Campus reveals how a quick-escape circuit in the fly's brain overrides the fly's slower, more controlled behavior when a threat becomes urgent.
"The fly's rapid takeoff is, on average, eight milliseconds faster than its more controlled ...
More than just a hill of beans: Phaseolus genome lends insights into nitrogen fixation
2014-06-08
"It doesn't take much to see that the problems of three little people doesn't add up to a hill of beans in this crazy world," Humphrey Bogart famously said in the movie Casablanca. For the farmers and breeders around the world growing the common bean, however, ensuring that there is an abundant supply of this legume is crucial, both for its importance in cropping systems to ensure plant vitality and for food security. Moreover, the U.S. Department of Energy Office of Science has targeted research into the common bean because of its importance in enhancing nitrogen use ...
Argument with dad? Find friendly ears to talk it out, study shows
2014-06-06
With Father's Day approaching, SF State's Jeff Cookston has some advice for creating better harmony with dad. In a recent study, he found that when an adolescent is having an argument with their father and seeks out others for help, the response he or she receives is linked to better well-being and father-child relationships.
Adolescents who receive an reason for the father's behavior or a better understanding of who is at fault feel better about themselves and about dad as well. Those feelings about dad, in turn, are linked to a lower risk of depression for youth.
The ...
Scientists reveal details of calcium 'safety-valve' in cells
2014-06-06
UPTON, NY -- Sometimes a cell has to die-when it's done with its job or inflicted with injury that could otherwise harm an organism. Conversely, cells that refuse to die when expected can lead to cancer. So scientists interested in fighting cancer have been keenly interested in learning the details of "programmed cell death." They want to understand what happens when this process goes awry and identify new targets for anticancer drugs.
The details of one such target have just been identified by a group of scientists from the U.S. Department of Energy's Brookhaven National ...
LAST 30 PRESS RELEASES:
Multi-resistance in bacteria predicted by AI model
Tinker Tots: A citizen science project to explore ethical dilemmas in embryo selection
Sensing sickness
Cost to build multifamily housing in California more than twice as high as in Texas
Program takes aim at drinking, unsafe sex, and sexual assault on college campuses
Inability to pay for healthcare reaches record high in U.S.
Science ‘storytelling’ urgently needed amid climate and biodiversity crisis
KAIST Develops Retinal Therapy to Restore Lost Vision
Adipocyte-hepatocyte signaling mechanism uncovered in endoplasmic reticulum stress response
Mammals were adapting from life in the trees to living on the ground before dinosaur-killing asteroid
Low LDL cholesterol levels linked to reduced risk of dementia
Thickening of the eye’s retina associated with greater risk and severity of postoperative delirium in older patients
Almost one in ten people surveyed report having been harmed by the NHS in the last three years
Enhancing light control with complex frequency excitations
New research finds novel drug target for acute myeloid leukemia, bringing hope for cancer patients
New insight into factors associated with a common disease among dogs and humans
Illuminating single atoms for sustainable propylene production
New study finds Rocky Mountain snow contamination
Study examines lactation in critically ill patients
UVA Engineering Dean Jennifer West earns AIMBE’s 2025 Pierre Galletti Award
Doubling down on metasurfaces
New Cedars-Sinai study shows how specialized diet can improve gut disorders
Making moves and hitting the breaks: Owl journeys surprise researchers in western Montana
PKU Scientists simulate the origin and evolution of the North Atlantic Oscillation
ICRAFT breakthrough: Unlocking A20’s dual role in cancer immunotherapy
How VR technology is changing the game for Alzheimer’s disease
A borrowed bacterial gene allowed some marine diatoms to live on a seaweed diet
Balance between two competing nerve proteins deters symptoms of autism in mice
Use of antifungals in agriculture may increase resistance in an infectious yeast
Awareness grows of cancer risk from alcohol consumption, survey finds
[Press-News.org] Longer telomeres linked to risk of brain cancerA double-edged sword, gene variants may promote overall health while increasing risk of gliomas