- Press Release Distribution

How repeatable is evolutionary history?

Scientists have identified a 'weakness' in the clover genome that biases species to evolve the same trait

How repeatable is evolutionary history?
( Writing about the weird soft-bodied fossils found in the Burgess Shale in the Canadian Rockies, paleontologist Stephen Jay Gould noted that of 25 initial body plans exhibited by the fossils, all but four were quickly eliminated. If we rewound the tape, he asked, and cast the dice once more, would the same four body plans be selected? He thought it unlikely.

We can't repeat the Burgess Shale experiment, but Washington University in St. Louis biologist Ken Olsen, PhD, says there are other ways to ask whether evolution is repeatable. One is to look at related species that have independently evolved the same traits and ask if the same genes are responsible and, if so, whether the same mutations led to the trait.

Looking at 27 species in the genus Trifolium (clovers), Olsen, an associate professor of biology, showed that six of them displayed what is called a balanced polymorphism. In some environments, natural selection favors plants that release hydrogen cyanide to discourage nibbling, while in others, plants that do not release cyanide are favored. The polymorphism evolved independently in each of the six species.

Often, we think of evolution as driven by chance mistakes in DNA replication, some of which produce novel traits. But in this case, chance played little part. The clover species are in a sense predisposed to develop this trait.

"We see exactly the same genetic mechanism — and it's kind of a weird mechanism — underlying the repeated evolution of the acyanogenic (cyanide-less) trait in different clover species," Olsen said.

The plants that don't make cyanide have deletions in their genomes in the spots where the required genes would normally be found. It's not that the gene is mutated; it's missing entirely.

"This is interesting," he said, "because it gets at the question of how constrained evolution is. The more it is constrained, the more predictable it is, but also the less adaptive flexibility there is."

"If you look at life on the planet, there's such an incredible diversity of life forms and traits that we tend to think anything goes," Olsen said. "But when we look more carefully, we see there are constraints. There aren't any living species of limbed vertebrates with six toes, for example; it's five toes or fewer."

The work appears in a special issue of Philosophical Transactions of the Royal Society B published online June 23. The issue honors the scientific contributions of Leslie D. Gottlieb, an early advocate of the use of biochemical and molecular data to study plant evolution.

The cyanide bomb Scientists have known that some forms of white clover release hydrogen cyanide for more than a century. They also quickly realized that white clover is polymorphic for the trait, meaning the species includes both cyanogenic and acyanogenic morphs.

This polymorphism has been the subject of a large number of studies to determine both the distribution of the two morphs and the nature of the selective forces responsible for maintaining the polymorphism.

Plants that release cyanide have a two-chemical "cyanide bomb" that is activated only when plant cells are crushed and the chemicals come in contact. Stored in the central vacuole of the plant cells are cyanogenic glucosides: sugar molecules with an attached cyanide group. In the plant cell's wall, an enzyme called linamarase can cleave the bond attaching the cyanide to the sugar.

When a slug, snail or chewing insect — the major predators on clover in the seedling lifestage — crushes the tender cells, the enzyme cleaves the cyanide, which combines with hydrogen to form gaseous hydrogen cyanide.

Many plants have this ability. It's what makes peach pits and apple seeds poisonous, for example. "In the case of clover, cyanide release probably doesn't kill herbivores outright," Olsen said. " It's more likely to just taste terrible — so it serves as a feeding deterrent. The level of cynanide released is much higher in other species, such as birdsfoot trefoil (the yellow-flowered plant that blooms along highways in June). In that case, it probably could kill them."

But white clover plants that make cyanide don't grow everywhere. You're much more likely to find them in warmer climates than in cold ones. In New Orleans, for example, 85 percent of the white clover plants growing in lawns might be cyanogenic, while in Wisconsin, only 10 percent might be.

A working hypothesis, Olsen said, is that in cooler climates, there are fewer herbivores around. "Since making these compounds is energetically expensive, plants that don't spend their resources making them have a competitive advantage in the cooler climates."

Just press DELETE Making the bomb requires two genes that are located in different parts of the clover genome. One of these genes controls the synthesis of the cyanogenic glucosides, and the other encodes the linamarase protein.

What happens when a cyanide-less morph pops up, Olsen said, is that one of these genes is deleted. "We see independent gene deletions occurring repeatedly in multiple species. So lots and lots of gene deletion."

This is not the "normal" way we think of adaptive variation occurring, Olsen said. Most of the time, random mutational changes affect one or a few nucleotides within one gene, which might convert one amino acid to another, which might alter a protein's function. So the changes are random and incremental. Instead, in this case, the entire gene disappears.

In the clover genus, something is making it easier for adaptive variation to arise through gene deletions than through simple mutations, Olsen said.

He thinks that "something" might be repetitive nucleotide sequences (repeats) near the cyanide bomb genes. In that case, chromosomes align to the "wrong" repeat when they pair during meiosis and swap genetic material. Unequal swaps caused by the misalignment can delete or add on extra chunks of DNA within the chromosome.

"Normally, a deletion like this would be detrimental," Olsen said. "But when these genes are deleted, the plant is favored in certain environments, and so this morph is maintained. That's why we see this polymorphism so often in natural populations."

It's not that evolution, restarted, would repeat itself exactly, Olsen said. But the closer the evolutionary relationship between species, the more likely there will be underlying predispositions that make the same traits pop up repeatedly in the same way.

In some ways, these predispositions are analogous to the crease patterns in origami paper that make it easier to fold the paper into some shapes than others. Evolution can fold across a crease — but it is much easier to fold along one.


[Attachments] See images for this press release:
How repeatable is evolutionary history? How repeatable is evolutionary history? 2


Pygmy shrew population in Ireland threatened by invasion of greater white-toothed shrew

An invading species of shrew first discovered in Ireland in the pellets of barn owls and kestrels in 2007 is spreading across the landscape at a rate of more than five kilometres a year, according to findings published in the scientific journal PLOS ONE. University College Dublin scientists who conducted the study say that the invading species, the greater white-toothed shrew (Crocidura russula) is capable of colonizing the entire island by 2050. This, they say, is leading to the disappearance of the pygmy shrew (Sorex minutus) from Ireland, one of the world's smallest ...

Women sometimes benefit more from cardiac resynchronization therapy than men

Bottom Line: Cardiac resynchronization therapy plus defibrillator implantation (CRT-D) sometimes helps women with heart failure more than men, although women are less likely to receive CRT-D than men. Author: Robbert Zusterzeel, M.D., and colleagues at the Center for Devices and Radiological Health at the U.S. Food and Drug Administration, Silver Spring, Md. Background: Women are underrepresented in CRT trials for heart failure, making up only about 20 percent of participants. In selected heart failure patients CRT, or biventricular pacing, is used to help improve ...

Examining lifetime intellectual enrichment and cognitive decline in older patients

Bottom Line: Higher scores that gauged education (years of school completed) and occupation (based on attributes, complexities of a job), as well as higher levels of mid/late-life cognitive activity (e.g., reading books, participating in social activities and doing computer activities at least three times per week) were linked to better cognition in older patients. Author: Prashanthi Vemuri, Ph.D., of the Mayo Clinic and Foundation, Rochester, Minn., and colleagues. Background: Previous research has linked intellectual enrichment with possible protection against ...

Intervention appears to help teen drivers get more, better practice

Bottom Line: A web-based program for teen drivers appears to improve driving performance and quality supervised practice time before teens are licensed. Author: Jessica H. Mirman, Ph.D., of The Children's Hospital of Philadelphia, and colleagues. Background: During the learner phase of driver education, most states have requirements for supervisors and practice content. However, parent supervisors can vary in their interest, ability and approach to driving supervision. Inexperience is a contributing factor in car crashes involving novice drivers. How the Study ...

Mammals defend against viruses differently than invertebrates

Biologists have long wondered if mammals share the elegant system used by insects, bacteria and other invertebrates to defend against viral infection. Two back-to-back studies in the journal Science last year said the answer is yes, but a study just published in Cell Reports by researchers at the Icahn School of Medicine at Mount Sinai found the opposite. In the Mount Sinai study, the results found that the defense system used by invertebrates — RNA interferences or RNAi — is not used by mammals as some had argued. RNAi are small molecules that attach to molecular scissors ...

Many ER patients test positive for HIV while in most infectious stage

WASHINGTON — Human Immunodeficiency Virus (HIV) screening for emergency patients at an institution with a large number of ethnic minority, underinsured and uninsured people reveals few are HIV positive, but of those who are, nearly one-quarter are in the acute phase and more than one-quarter have infections that have already advanced to Acquired Immune Deficiency Syndrome (AIDS). The results of the study were reported online yesterday in Annals of Emergency Medicine ("Identification of Acute HIV Infection Using Fourth Generation Testing in an Opt-Out Emergency Department ...

Fatal cellular malfunction identified in Huntington's disease

Researchers believe they have learned how mutations in the gene that causes Huntington's disease kill brain cells, a finding that could open new opportunities for treating the fatal disorder. Scientists first linked the gene to the inherited disease more than 20 years ago. Huntington's disease affects five to seven people out of every 100,000. Symptoms, which typically begin in middle age, include involuntary jerking movements, disrupted coordination and cognitive problems such as dementia. Drugs cannot slow or stop the progressive decline caused by the disorder, which ...

Cocoa extract may counter specific mechanisms of Alzheimer's disease

(NEW YORK – June 23) A specific preparation of cocoa-extract called Lavado may reduce damage to nerve pathways seen in Alzheimer's disease patients' brains long before they develop symptoms, according to a study conducted at the Icahn School of Medicine at Mount Sinai and published June 20 in the Journal of Alzheimer's Disease (JAD). Specifically, the study results, using mice genetically engineered to mimic Alzheimer's disease, suggest that Lavado cocoa extract prevents the protein β-amyloid- (Aβ) from gradually forming sticky clumps in the brain, which ...

'Tom Sawyer' regulatory protein initiates gene transcription in a hit-and-run mechanism

A team of genome scientists has identified a "hit-and-run" mechanism that allows regulatory proteins in the nucleus to adopt a "Tom Sawyer" behavior when it comes to the work of initiating gene activation. Their research, which appears in the Proceedings of the National Academy of Sciences, focuses on transcription factors—proteins that orchestrate the flow of genetic information from DNA to messenger RNA (mRNA). Their results show how transcription factors (TFs) activate mRNA synthesis of a gene, and leave the scene – in a model termed "hit-and-run" transcription. "Much ...

Treading into a gray area along the spectrum of wood decay fungi

One of the most basic rules for playing the game "Twenty Questions" is that all of the questions must be definitively answered by either "yes" or "no." The exchange of information allows the players to correctly guess the item in question. Fungal researchers have been using a variation of Twenty Questions to determine if wood-decaying fungi fall under one of two general classes. If a fungus can break down all the components – cellulose, hemicellulose and lignin – of plant cell walls it is considered a white rot fungus. If a fungus can only break down cellulose and hemicellulose ...


Unveiling the mysteries of cell division in embryos with timelapse photography

Survey finds loneliness epidemic runs deep among parents

Researchers develop high-energy-density aqueous battery based on halogen multi-electron transfer

Towards sustainable food systems: global initiatives and innovations

Coral identified as oldest bioluminescent organism, suggesting a new model of ancient ecology

SRI chosen by DARPA to develop next-generation computational design of metallic parts and intelligent testing of alloys

NJIT engineers muffle invading pathogens with a 'molecular mask'

Perinatal transmission of HIV can lead to cognitive deficits

The consumption of certain food additive emulsifiers could be associated with the risk of developing type 2 diabetes

New cancer research made possible as Surrey scientists study lipids cell by cell 

Bioluminescence first evolved in animals at least 540 million years ago

Squids’ birthday influences mating

Star bars show Universe’s early galaxies evolved much faster than previously thought

Critical minerals recovery from electronic waste

The move by Apple Memories to block potentially upsetting content illustrates Big Tech’s reach and limits, writes Chrys Vilvang

Chemical tool illuminates pathways used by dopamine, opioids and other neuronal signals

Asian monsoon lofts ozone-depleting substances to stratosphere

PET scans reveal ‘smoldering’ inflammation in patients with multiple sclerosis

Genetics predict type 2 diabetes risk and disparities in childhood cancer survivors

Health information on TikTok: The good, the bad and the ugly

New study points to racial and social barriers that block treatment for multiple myeloma

Rensselaer researcher finds that frog species evolved rapidly in response to road salts

A new chapter in quantum vortices: Customizing electron vortex beams

Don’t be a stranger – study finds rekindling old friendships as scary as making new ones

There’s no ‘one size fits all’ when it comes to addressing men’s health issues globally

Comparison of the “late catch-up” phenomenon between BuMA Supreme and XIENCE stents through serial optical coherence tomography at 1–2 month and 2 year follow-ups: A multicenter study

Marine plankton communities changed long before extinctions

Research reveals tools to make STEM degrees more affordable

Q&A: UW research shows neural connection between learning a second language and learning to code

Keane wins 2024 Gopal K. Shenoy Excellence in Beamline Science Award

[] How repeatable is evolutionary history?
Scientists have identified a 'weakness' in the clover genome that biases species to evolve the same trait