PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Learning from origami to design new materials

Physicists and materials scientists are using origami-based folding methods for 'tuning' physical properties of any type of thin sheet, which may lead to developing molecular-scale machines that could snap into place and perform mechanical tasks

Learning from origami to design new materials
2014-08-07
(Press-News.org) AMHERST, Mass. -- A challenge increasingly important to physicists and materials scientists in recent years has been how to design controllable new materials that exhibit desired physical properties rather than relying on those properties to emerge naturally, says University of Massachusetts Amherst physicist Christian Santangelo.

Now he and physicist Arthur Evans and polymer scientist Ryan Hayward at UMass Amherst, with others at Cornell and Western New England University, are using origami-based folding methods for "tuning" the fundamental physical properties of any type of thin sheet, which may eventually lead to development of molecular-scale machines that could snap into place and perform mechanical tasks. Results are reported today in an early online edition of Science.

At a physics meeting a couple of years ago, Santangelo mentioned the unusual properties of a special type of origami fold called Miura-ori to fellow physicist Jesse Silverberg of Cornell, a long-time origami enthusiast. Miura-ori, named after the astrophysicist who invented the technique, is a series folded parallelograms that change the stiffness of a sheet of paper based only on the crease pattern.

Also known as tessellation, this special folding, which occurs naturally in some leaves and tissues, arranges a flat surface using a repeated pattern of alternating mountain-and-valley zigzag folds. Objects folded this way contract when squeezed, a bit like an accordion, so they can be packed into a very small shape but unfolded with little effort from the corners. This technique has been used in space to launch satellites with solar arrays that can be unfolded using only a few small motors at the edges.

Santangelo explains, "As you compress most materials along one axis, they expand in other directions. In other words, squeezing a hunk of material causes it to leak out the sides. A rare class of materials, however, does the opposite. If you compress them along one direction, they collapse uniformly in all directions. Miura-ori shows us how to use this property to make new devices. Exotic materials can be formed from traditional materials simply by altering microscopic structure."

Santangelo, with Silverberg and Itai Cohen at Cornell and Tom Hull at Western New England, describe in their new paper how to alter patterns and introduce defects to tune a thin sheet's stiffness and create a material in which physical properties can be programmed and reprogrammed.

Silverberg says, "The work brings together origami, metamaterials, programmable matter crystallography and more. It's totally bizarre and unique to have so many of these ideas intersecting at the same time."

Santangelo says active materials can change their shape, size, and/or physical properties with changes in temperature, pressure, electro-magnetic fields, or other aspects of their environment. With such materials, researchers may be able to create entire structures and systems out of single pieces that are flexible, elastic and resilient.

Santangelo adds, "In particular, this gives us the ability to make a reprogrammable material. By toggling elements of the origami structure between two stable states, we can make the structure stiffer, selectively weaken certain parts, and so on. And we can do it reversibly. Given origami's scale-free geometric character, this framework for metamaterial design can be directly transferred to milli-, micro- and nanometer size systems."

He adds that metamaterials are rapidly emerging at the frontier of scientific and technological innovation due to their exotic and tunable material properties, which arise from arrangements of smaller units within the bulk system to generate exotic, non-natural properties on larger scales. Miura-ori can be considered a mechanical metamaterial because its stiffness can be controlled by the specific fold angles of the parallelograms, Silverberg explains.

The physicists point out that is rare to find metamaterials that can be reconfigured beyond their original design, but origami-inspired mechanical metamaterials offer enhanced flexibility because their properties are linked to alterable folding pattern. So-called "pop-through defects" made by changing crease directions, can be introduced to change a sheet's stiffness, so multiple stable configurations can come from a single structure yielding programmable metamaterials.

Using numerical simulations, Evans and Santangelo calculated the effect that a pop-through defect has on Miura-ori. They showed that it instantly makes the entire sheet stiffer, and the effect is additive. The Cornell group will present this research at the Sixth International Meeting on Origami in Science, Mathematics and Education on Aug. 10 in Tokyo.

INFORMATION: END

[Attachments] See images for this press release:
Learning from origami to design new materials

ELSE PRESS RELEASES FROM THIS DATE:

Robot folds itself up and walks away

Robot folds itself up and walks away
2014-08-07
A team of engineers used little more than paper and Shrinky dinks™ – the classic children's toy that shrinks when heated – to build a robot that assembles itself into a complex shape in four minutes flat, and crawls away without any human intervention. The advance, described in Science, demonstrates the potential to quickly and cheaply build sophisticated machines that interact with the environment, and to automate much of the design and assembly process. The method draws inspiration from self-assembly in nature, such as the way linear sequences of amino acids fold into ...

Origami robot folds itself up, crawls away

2014-08-07
For years, a team of researchers at MIT and Harvard University has been working on origami robots — reconfigurable robots that would be able to fold themselves into arbitrary shapes. In the August 7 issue of Science, they report their latest milestone: a robot, made almost entirely from parts produced by a laser cutter, that folds itself up and crawls away as soon as batteries are attached to it. "The exciting thing here is that you create this device that has computation embedded in the flat, printed version," says Daniela Rus, the Andrew and Erna Viterbi Professor ...

NASA sees heavy rainfall in Iselle as the hurricane nears Hawaii

NASA sees heavy rainfall in Iselle as the hurricane nears Hawaii
2014-08-07
VIDEO: TRMM satellite rainfall data overlaid on an enhanced infrared image from NOAA's GOES-West satellite shows heavy rainfall occurring around the Iselle's eye. The most intense rain was falling at a... Click here for more information. A NASA satellite has observed heavy rainfall in Hurricane Iselle on its approach to Hawaii. NASA's TRMM Satellite captured rainfall rates within the storm as it passed overhead. In addition, NASA's Aqua satellite provided a larger view of the Central ...

Cell signaling pathway linked to obesity, type 2 diabetes

Cell signaling pathway linked to obesity, type 2 diabetes
2014-08-07
WEST LAFAYETTE, Ind. - A Purdue University study shows that Notch signaling, a key biological pathway tied to development and cell communication, also plays an important role in the onset of obesity and Type 2 diabetes, a discovery that offers new targets for treatment. A research team led by Shihuan Kuang, associate professor of animal sciences, found that blocking Notch signaling in the fat tissue of mice caused white fat cells to transform into a "leaner" type of fat known as beige fat. The finding suggests that suppressing Notch signaling in fat cells could reduce ...

Gut microbes browse along a gene buffet

2014-08-07
DURHAM, N.C. -- In the moist, dark microbial rainforest of the intestine, hundreds of species of microorganisms interact with each other and with the cells of the host animal to get the resources they need to survive and thrive. Though there's a lot of competition in this vibrant ecosystem, collaboration is valued too. A new study on the crosstalk between microbes and cells lining the gut of mice shows just how cooperative this environment can be. One of the main ways that hosts manage their interactions with microbes is by carefully controlling the genes that their ...

NASA sees Hurricane Julio organize and emit a gamma-ray flash

NASA sees Hurricane Julio organize and emit a gamma-ray flash
2014-08-07
NASA's Fermi and Aqua satellites captured two different views of bursts of strength show by Hurricane Julio as it intensified. NASA's Fermi satellite saw a gamma-ray flash from Julio, while NASA's Aqua satellite saw Julio become more structurally organized as a hurricane. This type of outburst is known as a terrestrial gamma-ray flash (TGF). Produced by the powerful electric fields in thunderstorms, TGFs last only a few thousandths of a second but emit gamma rays that make up the highest-energy naturally-occurring light on Earth. Scientists estimate that, on average, ...

Wild sheep show benefits of putting up with parasites

Wild sheep show benefits of putting up with parasites
2014-08-07
In the first evidence that natural selection favors an individual's infection tolerance, researchers from Princeton University and the University of Edinburgh have found that an animal's ability to endure an internal parasite strongly influences its reproductive success. Reported in the journal PLoS Biology, the finding could provide the groundwork for boosting the resilience of humans and livestock to infection. The researchers used 25 years of data on a population of wild sheep living on an island in northwest Scotland to assess the evolutionary importance of infection ...

NASA sees Genevieve cross international date line as a Super-Typhoon

NASA sees Genevieve cross international date line as a Super-Typhoon
2014-08-07
Tropical Storm Genevieve had ups and downs in the Eastern Pacific and Central Pacific over the last week but once the storm crossed the International Dateline in the Pacific, it rapidly intensified into a Super Typhoon. NASA-NOAA's Suomi NPP satellite captured of the storm. When Suomi NPP flew over Genevieve on August 7 at 01:48 UTC the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard captured an infrared image of the storm. VIIRS collects visible and infrared imagery and global observations of land, atmosphere, cryosphere and oceans. VIIRS flies aboard ...

Dramatic growth of grafted stem cells in rat spinal cord injuries

Dramatic growth of grafted stem cells in rat spinal cord injuries
2014-08-07
Building upon previous research, scientists at the University of California, San Diego School of Medicine and Veteran's Affairs San Diego Healthcare System report that neurons derived from human induced pluripotent stem cells (iPSC) and grafted into rats after a spinal cord injury produced cells with tens of thousands of axons extending virtually the entire length of the animals' central nervous system. Writing in the August 7 early online edition of Neuron, lead scientist Paul Lu, PhD, of the UC San Diego Department of Neurosciences and colleagues said the human iPSC-derived ...

Human skin cells reprogrammed as neurons regrow in rats with spinal cord injuries

2014-08-07
While neurons normally fail to regenerate after spinal cord injuries, neurons formed from human induced pluripotent stem cells (iPSCs) that were grafted into rats with such injuries displayed remarkable growth throughout the length of the animals' central nervous system. What's more, the iPSCs were derived from skin cells taken from an 86-year-old man. The results, described in the Cell Press journal Neuron, could open up new possibilities in stimulating neuron growth in humans with spinal cord injuries "These findings indicate that intrinsic neuronal mechanisms readily ...

LAST 30 PRESS RELEASES:

Understanding survival disparities in cancer care: A population-based study on mobility patterns

Common sleep aid may leave behind a dirty brain

Plant cells gain immune capabilities when it’s time to fight disease

Study sheds light on depression in community-dwelling older adults

Discovery of new class of particles could take quantum mechanics one step further

Cost-effectiveness of a polypill for cardiovascular disease prevention in an underserved population

Development and validation of a tool to predict onset of mild cognitive impairment and Alzheimer dementia

New AI predicts inner workings of cells

Scientists uncover key step in how diazotrophs “fix” nitrogen

The hidden mechanics of earthquake ignition

Scientists leverage artificial intelligence to fast-track methane mitigation strategies in animal agriculture

Researchers unravel a novel mechanism regulating gene expression in the brain that could guide solutions to circadian and other disorders

Discovery of 'Punk' and 'Emo' fossils challenges our understanding of ancient molluscs

Exposure to aircraft noise linked to worse heart function

Deans of the University of Nottingham visited Korea University's College of Medicine

New study assesses wildfire risk from standing dead trees in Yellowstone National Park

A new approach for improving hot corrosion resistance and anti-oxidation performance in silicide coating on niobium alloys

UC San Diego to lead data hub of CDC-funded pandemic preparedness network

Biomimetic teakwood structured environmental barrier coating

Low-cost system will improve communications among industrial machines

Elderberry juice shows benefits for weight management, metabolic health

A new era in genetic engineering

Study identifies coastal black pine trees resistant to tsunamis and strong winds

From gender dysphoria to special skills: decoding the link

Study advances possible blood test for early-stage Alzheimer’s disease

New international research collaboration to develop and test an improved dietary supplement for pregnant women

Presenting a path forward for future genetically-modified pig heart transplants: lessons learned from second patient

When the past meets the future: Innovative drone mapping unlocks secrets of Bronze Age ‘mega fortress’ in the Caucasus

AI could improve the success of IVF treatment

Moving in sync, slowly, in glassy liquids

[Press-News.org] Learning from origami to design new materials
Physicists and materials scientists are using origami-based folding methods for 'tuning' physical properties of any type of thin sheet, which may lead to developing molecular-scale machines that could snap into place and perform mechanical tasks