PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Stanford researchers use fruit flies to unlock mysteries of human diabetes

2014-08-07
(Press-News.org) For the first time, the tiny fruit fly can be used to study how mutations associated with the development of diabetes affect the production and secretion of the vital hormone insulin.

The advance is due to a new technique devised by researchers at the Stanford University School of Medicine that allows scientists to measure insulin levels in the insects with extremely high sensitivity and reproducibility.

The experimental model is likely to transform the field of diabetes research by bringing the staggering power of fruit fly genetics, honed over 100 years of research, to bear on the devastating condition that affects millions of Americans. Until now, scientists wishing to study the effect of specific mutations on insulin had to rely on the laborious, lengthy and expensive genetic engineering of laboratory mice or other mammals.

In contrast, tiny, short-lived fruit flies can be bred in dizzying combinations by the tens of thousands in just days or weeks in small flasks on a laboratory bench.

"I normally avoid the term, but I think Dr. Park's new technique is a true breakthrough," said Seung Kim, MD, PhD, professor of developmental biology. "Only in selected mammals can researchers measure insulin with this degree of sensitivity."

Kim, who is also a Howard Hughes Medical Institute investigator, is the senior author of the paper describing the research. Research associate Sangbin Park, PhD, is the lead author of the paper, which will be published Aug. 7 in PLOS Genetics.

The power of a tiny model system

Insulin is an ancient molecule used by nearly all animals to regulate metabolism, growth and development. Diabetes in humans occurs when insulin-making cells in the pancreas fail to produce the hormone or when other cells in the body grow resistant to its effects. In 2002, Kim, his lab team and fellow Stanford researchers discovered that fruit flies develop a diabetes-like condition when their insulin-producing cells are destroyed.

"Studies of diabetes in fruit flies represent a relatively new area of investigation," said Carl Thummel, PhD, professor of human genetics at the University of Utah School of Medicine. Thummel uses the insect to study energy metabolism and metabolic disorders.

"Needless to say, fruit flies are very small, and only tiny amounts of blood can be extracted from their bodies," he said. "Our inability to measure the amounts of circulating insulin has been a major drawback in the field. The technique developed by Dr. Kim's group will allow researchers to rapidly test the effect of diabetes risk factors, and establishes fruit flies as an effective tool for studies of diabetes."

Developed by Park, the new technique uses a chemical tag to label an insulin-like peptide called Ilp2 in fruit flies. The tag allows researchers to use an antibody-based assay to measure insulin concentrations in the insect's blood and cells at the picomolar level — the level at which insulin concentrations are measured in humans.

Using the technique, the researchers were able to quickly identify what a mutation associated with type-2 diabetes in humans actually does: It regulates insulin secretion, but not production.

Understanding the effect of each mutation

Parsing the effect of each mutation on the way the body produces, secretes and responds (or not) to insulin is critical to further understand the disease and to devise new therapeutic approaches. "I was stunned that this technique worked so well to identify the effect of specific mutations," said Park. "Many of the genes we studied seem to have similar functions in governing insulin production or secretion in flies and in humans."

Previous efforts to tag Ilp2 have been hampered by the fact that the protein undergoes a complex series of modifications and folding events on its way to becoming the active form of the molecule. Tags that disrupt this process can cause inappropriate expression of the molecule or render it inactive, interfering with the very metabolic pathway researchers want to study.

Park capitalized on the knowledge that overexpression of the active form of the Ilp2 protein is lethal. He then randomly inserted chemical tags along the length of the molecule to create a panel of molecules tagged in many different places. Testing them individually, he looked for those that were still able to kill the flies — indicating that the molecule's activity had not been compromised. Eventually he found two locations on Ilp2 that were ideal. He could then use antibodies that recognized the tags to quantify levels of Ilp2 with the antibody-based assay.

"Once you know that the modifications, or tags, don't affect the expression or activity of the molecule, you have a lot more power to interpret your experiments," said Kim. "You can begin to track the insulin assembly line, from the transcription of RNA from the gene, to the production of the protein, to the storing and eventual secretion of the protein in response to metabolic signals. You have the opportunity to figure out the mechanisms controlling each of those steps in detail."

In flies, Ilp2 is produced and secreted by specialized neurons in the brain. This makes it relatively easy to compare levels of circulating Ilp2 with the amount of mature but unsecreted Ilp2: simply compare the amount of Ilp2 in the insects' bodies to the amount in their brains.

Park found that the amount of secreted Ilp2 increased from about 0.1 percent to about 0.35 percent of the total available during the first three days of a fruit fly's life. Furthermore, like in humans, circulating Ilp2 concentrations were relatively low in fasting flies, but peaked and then declined after a subsequent meal. Finally he showed that, in flies with only one working copy of the insulin receptor gene (they normally have two, as do humans), insulin secretion was increased in an apparent attempt to compensate for the deficiency — mirroring the development of insulin resistance in humans and mice.

Park and his colleagues then turned their attention to mutations associated with type-2 diabetes in genome-wide studies in humans. These studies don't reveal how a specific mutation might work to affect development of a disease; they show only that people with the condition are more likely than those without it to have certain mutations in their genome. Hundreds of candidate-susceptibility genes have been identified in this way.

Tip of the iceberg

The researchers found that blocking the expression of a fly version of a human protein called GLIS3, known to affect insulin production in mammals, and linked both to type-2 and type-1 diabetes in humans, also affected the production of Ilp2 in flies. A mutation in another protein, BCL11A, was known to be associated with the development of the disease in humans, but its mechanism of action was unclear. Park and his colleagues found that blocking the expression of the fly version of BCL11A did not affect the flies' ability to make Ilp2, but caused it to secrete abnormally high levels of Ilp2 into the bloodstream.

The researchers emphasize that these findings are just the tip of the iceberg. Many more mutations can be studied alone and in combination under a myriad of experimental conditions. A single fruit fly can lay several hundred eggs during its approximately 40-day life span; eggs develop into adults in only 10 days. They plan to continue to use the fruit fly system to complement and inform their ongoing studies in mammals and humans.

"We're really taking advantage of a century of work done by generations of other researchers," said Kim. "Historically the fly has been used to understand developmental biology by looking at its genes and its cells and observing how they change over time. Now we've shown we can accurately and precisely measure levels of a crucial hormone in these insects, and use that to identify new targets for diabetes investigation in mice and humans."

INFORMATION: Other authors are Stanford graduate student Ronald Alfa and research associate Lutz Kockel, and high-school students Grace Kim and Sydni Topper.

The research was funded by the Howard Hughes Medical Institute, Stanford's Bio-X Institute, a Paul and Daisy Soros Fellowship for New Americans, and the Snyder Foundation.

Information about Stanford's Department of Developmental Biology, in which the research took place, is available at http://devbio.stanford.edu.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital Stanford. For information about all three, please visit http://stanfordmedicine.org/about/news.html. Print media contacts: Krista Conger at (650) 725-5371 (kristac@stanford.edu), Margarita Gallardo at (650) 723-7897 (mjgallardo@stanford.edu) - Aug. 1 only Broadcast media contact: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)



ELSE PRESS RELEASES FROM THIS DATE:

Small, origami-inspired pop-up robots function autonomously

Small, origami-inspired pop-up robots function autonomously
2014-08-07
This release is available in Japanese. Inspired by the traditional Japanese art form of Origami or "folding paper," researchers have developed a way to coax flat sheets of composite materials to self-fold into complex robots that crawl and turn. "We demonstrated this process by building a robot that folds itself and walks away without human assistance," said Sam Felton, a Ph.D. candidate at Harvard University's School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering and the lead author of a new report in the 8 August ...

Ocean's most oxygen-deprived zones to shrink under climate change

2014-08-07
As the complex story of climate change unfolds, many of the endings are grim. But there are exceptions. Predictions that the lowest-oxygen environments in the ocean would get worse may not come to pass. Instead, University of Washington research shows climate change, as it weakens the trade winds, could shrink the size of these extreme low-oxygen waters. "The tropics should actually get better oxygenated as the climate warms up," said Curtis Deutsch, a UW associate professor of oceanography. He is lead author of the study published Aug. 8 in Science. Warmer water contains ...

Water 'microhabitats' in oil show potential for extraterrestrial life, oil cleanup

2014-08-07
PULLMAN –An international team of researchers has found extremely small habitats that increase the potential for life on other planets while offering a way to clean up oil spills on our own. Looking at samples from the world's largest natural asphalt lake, they found active microbes in droplets as small as a microliter, which is about 1/50th of a drop of water. "We saw a huge diversity of bacteria and archaea," said Dirk Schulze-Makuch, a professor in Washington State University's School of the Environment and the only U.S. researcher on the team. "That's why we speak ...

Orally delivered compounds selectively modify RNA splicing, prevent deficits in SMA models

2014-08-07
Today the journal Science published results of a preclinical study demonstrating that treatment with orally available RNA splicing modifiers of the SMN2 gene starting early after birth is preventing deficits in a mouse model of Spinal Muscular Atrophy (SMA). Scientists from Roche Pharma Research and Early Development (pRED), PTC Therapeutics, Inc., the SMA Foundation, the University of Southern California and Harvard University collaborated to demonstrate that continuous treatment of SMA mice with these compounds increased life span, normalized body weight and prevented ...

Study reveals dynamics of microbes and nitrate

2014-08-07
Human tampering with global carbon balances has received massive public attention because of its effects on global warming, but we pay less attention to another set of chemical processes we are similarly disrupting: human input to the nitrogen cycle. Unfortunately, the story of nitrogen transformations in the biosphere is also less understood. In modern times, humans developed the technology to turn nitrogen gas in the atmosphere into a biologically available form to be used as fertilizer. Before this, bio-available or "fixed" nitrogen was only created sparingly by natural ...

Origami could lead to exotic materials, tiny transformers

2014-08-07
ITHACA, N.Y. – Embracing the pleats, creases and tucks of the Japanese art of decorative paper folding, Cornell University researchers are uncovering how origami principles could lead to exotic materials, soft robots and even tiny transformers. Publishing online in the journal Science Aug. 8, an interdisciplinary team led by Cornell's Itai Cohen, associate professor of physics, and graduate student Jesse Silverberg have discovered how to use a well-known origami folding pattern called the Miura-ori to control fundamental physical properties of any thin sheet of material. Video, ...

Step closer to birth of the sun

2014-08-07
Researchers are a step closer to understanding the birth of the sun. Published in Science, the team led by Dr Maria Lugaro and Professor Alexander Heger, from Monash University, have investigated the solar system's prehistoric phase and the events that led to the birth of the sun. Dr Lugaro, from the Monash Centre for Astrophysics, said the team used radioactivity to date the last time that heavy elements such as gold, silver, platinum, lead and rare-earth elements were added to the solar system matter by the stars that produced them. "Using heavy radioactive nuclei ...

Finding the genetic culprits that drive antibiotic resistance

2014-08-07
Researchers have developed a powerful new tool to identify genetic changes in disease-causing bacteria that are responsible for antibiotic resistance. The results from this technique could be used in clinics within the next decade to decide on the most effective treatments for diseases such as pneumonia and meningitis. The team looked at the genome of Streptococcus pneumoniae, a bacterial species that causes 1.6 million deaths worldwide each year. In the most detailed research of its kind, scientists used a genome-wide association study (GWAS) to locate single-letter ...

Learning from origami to design new materials

Learning from origami to design new materials
2014-08-07
AMHERST, Mass. -- A challenge increasingly important to physicists and materials scientists in recent years has been how to design controllable new materials that exhibit desired physical properties rather than relying on those properties to emerge naturally, says University of Massachusetts Amherst physicist Christian Santangelo. Now he and physicist Arthur Evans and polymer scientist Ryan Hayward at UMass Amherst, with others at Cornell and Western New England University, are using origami-based folding methods for "tuning" the fundamental physical properties of any ...

Robot folds itself up and walks away

Robot folds itself up and walks away
2014-08-07
A team of engineers used little more than paper and Shrinky dinks™ – the classic children's toy that shrinks when heated – to build a robot that assembles itself into a complex shape in four minutes flat, and crawls away without any human intervention. The advance, described in Science, demonstrates the potential to quickly and cheaply build sophisticated machines that interact with the environment, and to automate much of the design and assembly process. The method draws inspiration from self-assembly in nature, such as the way linear sequences of amino acids fold into ...

LAST 30 PRESS RELEASES:

Earth’s air war: Explaining the delayed rise of plants, animals on land

More than half of college students report alcohol-related harms from others

Smart food drying techniques with AI enhance product quality and efficiency

Typical cost of developing new pharmaceuticals is skewed by high-cost outliers

Predicting the progression of autoimmune disease with AI

Unlocking Romance: UCLA offers dating program for autistic adults

Research Spotlight: Researchers reveal the influences behind timing of sleep spindle production

New research reveals groundwater pathways across continent

Students and faculty to join research teams this spring at Department of Energy National Laboratories and a fusion facility

SETI Forward recognizes tomorrow’s cosmic pioneers

Top mental health research achievements of 2024 from the Brain & Behavior Research Foundation

FAU names Lewis S. Nelson, M.D., Dean of the Schmidt College of Medicine

UC Irvine-led study challenges traditional risk factors for brain health in the oldest-old

Study shows head trauma may activate latent viruses, leading to neurodegeneration

Advancements in neural implant research enhance durability

SwRI models Pluto-Charon formation scenario that mimics Earth-Moon system

Researchers identify public policies that work to prevent suicide

Korea University College of Medicine and Yale Univeristy co-host forum on Advancing Healthcare through Data and AI Innovations

Nuclear lipid droplets: Key regulators of aging and nuclear homeostasis

Driving autonomous vehicles to a more efficient future

Severe maternal morbidity among pregnant people with opioid use disorder enrolled in Medicaid

Macronutrients in human milk exposed to antidepressant and anti-inflammatory medications

Exploring the eco-friendly future of antibiotic particles

Can you steam away prostate cancer?

The CTAO becomes a European Research Infrastructure Consortium

Introduction to science journalism guide published in Albanian

Official launch of Global Heat Health Information Network Southeast Asia Hub at NUS Medicine

Childhood smoking increases a person’s risk of developing COPD

MD Anderson and Myriad Genetics form strategic alliance to evaluate clinical utility of Myriad’s molecular residual disease assay

Method can detect harmful salts forming in nuclear waste melters

[Press-News.org] Stanford researchers use fruit flies to unlock mysteries of human diabetes