PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

How hummingbirds evolved to detect sweetness

How hummingbirds evolved to detect sweetness
2014-08-21
(Press-News.org) Everything about hummingbirds is rapid. An iridescent blur to the human eye, their movements can be captured with clarity only by high-speed video.

Slowed down on replay, their wings thrum like helicopter blades as they hover near food. Their hearts beat 20 times a second and their tongues dart 17 times a second to slurp from a feeding station.

It takes only three licks of their forked, tube-like tongues to reject water when they expect nectar. They pull their beaks back, shake their heads and spit out the tasteless liquid. They also are not fooled by the sugar substitute that sweetens most diet cola.

These hummingbirds look mad.

The birds' preference for sweetness is plain, but only now can scientists explain the complex biology behind their taste for sugar. Their discovery required an international team of scientists, fieldwork in the California mountains and at Harvard University's Concord Field Station, plus collaborations from Harvard labs on both sides of the Charles River.

Now, in a paper published in Science, the scientists show how hummingbirds' ability to detect sweetness evolved from an ancestral savory taste receptor that is mostly tuned to flavors in amino acids. Feasting on nectar and the occasional insect, the tiny birds expanded throughout North and South America, numbering more than 300 species over the 40 to 72 million years since they branched off from their closest relative, the swift.

"It's a really nice example of how a species evolved at a molecular level to adopt a very complex phenotype," said Stephen Liberles, HMS associate professor of cell biology. "A change in a single receptor can actually drive a change in behavior and, we propose, can contribute to species diversification."

This sweet discovery all started with the chicken genome. Before scientists sequenced its genes, people assumed that chickens and all birds taste things the same way that mammals do: with sensory receptors for salty, sour, bitter, sweet and the more recently recognized umami taste, which comes from the Japanese word for savory.

The canonical view stated there was a sweet receptor present in animals, much smaller than the large families of receptors involved in smell and bitter taste perception—vital for sensing safe food or dangerous predators.

Some animals have lost certain taste abilities. The panda, for example, feeds exclusively on bamboo and lacks savory taste receptors. Carnivores, notably cats, are indifferent to sweet tastes. The gene for tasting sweetness is present in their genomes, but it's nonfunctional. Scientists suspect that an interplay between taste receptors and diet may effectively relegate the sweet taste receptor into a pseudogene that does not get turned on and eventually disappears.

The chicken genome is another story: It has no trace of a sweet-taste receptor gene. Faced with this all-or-nothing scenario, Maude Baldwin, co-first author of the paper, had one reaction.

"The immediate question to ornithologists or to anybody who has a birdfeeder in the backyard was: What about hummingbirds?" she recalled. "If they are missing the single sweet receptor, how are they detecting sugar?"

More bird genomes were sequenced, and still no sweet receptor.

So began Baldwin's quest to understand how hummingbirds detected sugar and became highly specialized nectar feeders. A doctoral student in organismic and evolutionary biology and Museum of Comparative Zoology, she is a member of the lab of Scott Edwards, Professor of Organismic and Evolutionary Biology and Curator of Ornithology in the Museum of Comparative Zoology. She sought out Liberles at a meeting of the International Symposium on Smell and Taste in San Francisco. They agreed to work together on experiments that would eventually reveal how hummingbirds evolved and diversified, based on a change in their taste receptor.

After cloning the genes for taste receptors from chickens, swifts and hummingbirds—a three-year process—Baldwin needed to test what the proteins expressed by these genes were responding to. She joined forces with another scientist at another International Taste and Smell meeting. Yasuka Toda, a graduate student of the University of Tokyo and co-first author of the paper, had devised a method for testing taste receptors in cell culture.

Together they showed that in chickens and swifts the receptor responds strongly to amino acids—the umami flavors—but in hummingbirds only weakly. But the receptor in hummingbirds responds strongly to carbohydrates—the sweet flavors.

"This is the first time that this umami receptor has ever been shown to respond to carbohydrates," Baldwin said.

Toda mixed and matched different subunits of the chicken and hummingbird taste receptors into hybrid chimeras to understand which parts of the gene were involved in this change in function. All told, she found 19 mutations, but there are likely more contributing to this sweet switch, Baldwin and Liberles suspect.

"If you look at the structure of the receptor, it involved really dramatic changes over its entire surface to accomplish this complex feat," Liberles said. "Amino acids and sugars look very different structurally so in order to recognize them and sense them in the environment, you need acompletely different lock and key. The key looks very different, so you have to change the lock almost entirely."

Once the mutations were discovered, the next question was, do they matter? Does this different taste receptor subunit drive behavior in the hummingbirds?

Back at the feeding stations, the birds answered yes. They spat out the water, but they siphoned up both the sweet nectar and one artificial sweetener that evoked a response in the cell-culture assay, unlike aspartame and its ilk. It's not nectar, with its nutritional value, but it's still sweet.

"That gave us the link between the receptor and behavior," Liberles said. "This dramatic change in the evolution of a new behavior is a really powerful example of how you can explain evolution on a molecular level."

This work underscores how much remains to be learned about taste and our other senses, Liberles said.

"Sensory systems give us a window into the brain to define what we understand about the world around us," he said. "The taste system is arguably a really direct line to pleasure and aversion, reward and punishment, sweet and bitter. Understanding how neural circuits can encode these differentially gives us a window into other aspects of perception."

INFORMATION: The work was supported by National Science Foundation grants DDIG 1110487, SICB, Sigma Xi; the Fulbright Commission and Science Foundation Ireland Research Frontiers Program EOB2673; National Institutes of Health RO1DC013289; and JSPS, LS037.

[Attachments] See images for this press release:
How hummingbirds evolved to detect sweetness

ELSE PRESS RELEASES FROM THIS DATE:

From dandruff to deep sea vents, an ecologically hyper-diverse fungus

2014-08-21
A ubiquitous skin fungus linked to dandruff, eczema and other itchy, flaky maladies in humans has now been tracked to even further global reaches—including Hawaiian coral reefs and the extreme environments of arctic soils and deep sea vents. A review in the scientific journal PLOS Pathogens considers the diversity, ecology, and distribution of the fungi of the genus Malassezia in light of new insights gained from screening environmental sequencing datasets from around the world. University of Hawai'i at Mānoa scientist Anthony Amend discovered that members of this ...

New properties of rotating superfluids discovered in helium nanodroplets

2014-08-21
Liquid helium, when cooled down nearly to absolute zero, exhibits unusual properties that scientists have struggled to understand: it creeps up walls and flows freely through impossibly small channels, completely lacking viscosity. It becomes a new state of matter – a "superfluid." Now, a large, international team of researchers led by scientists at USC, Stanford and Berkeley has used X-rays from a free-electron laser to peer inside individual droplets of liquid helium, exploring whether this liquid helium retains its superfluid characteristics even at microscopic scales ...

Severe drought is causing the western US to rise

2014-08-21
The severe drought gripping the western United States in recent years is changing the landscape well beyond localized effects of water restrictions and browning lawns. Scientists at Scripps Institution of Oceanography at UC San Diego have now discovered that the growing, broad-scale loss of water is causing the entire western U.S. to rise up like an uncoiled spring. Investigating ground positioning data from GPS stations throughout the west, Scripps researchers Adrian Borsa, Duncan Agnew, and Dan Cayan found that the water shortage is causing an "uplift" effect up to ...

X-ray laser probes tiny quantum tornadoes in superfluid droplets

X-ray laser probes tiny quantum tornadoes in superfluid droplets
2014-08-21
An experiment at the Department of Energy's SLAC National Accelerator Laboratory revealed a well-organized 3-D grid of quantum "tornadoes" inside microscopic droplets of supercooled liquid helium – the first time this formation has been seen at such a tiny scale. The findings by an international research team provide new insight on the strange nanoscale traits of a so-called "superfluid" state of liquid helium. When chilled to extremes, liquid helium behaves according to the rules of quantum mechanics that apply to matter at the smallest scales and defy the laws of classical ...

Researchers map quantum vortices inside superfluid helium nanodroplets

Researchers map quantum vortices inside superfluid helium nanodroplets
2014-08-21
Scientists have, for the first time, characterized so-called quantum vortices that swirl within tiny droplets of liquid helium. The research, led by scientists at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), the University of Southern California, and SLAC National Accelerator Laboratory, confirms that helium nanodroplets are in fact the smallest possible superfluidic objects and opens new avenues to study quantum rotation. "The observation of quantum vortices is one of the most clear and unique demonstrations of the quantum properties ...

Sunlight, not microbes, key to CO2 in Arctic

Sunlight, not microbes, key to CO2 in Arctic
2014-08-21
CORVALLIS, Ore. – The vast reservoir of carbon stored in Arctic permafrost is gradually being converted to carbon dioxide (CO2) after entering the freshwater system in a process thought to be controlled largely by microbial activity. However, a new study – funded by the National Science Foundation and published this week in the journal Science – concludes that sunlight and not bacteria is the key to triggering the production of CO2 from material released by Arctic soils. The finding is particularly important, scientists say, because climate change could affect when ...

A novel 'man and machine' decision support system makes malaria diagnostics more effective

A novel man and machine decision support system makes malaria diagnostics more effective
2014-08-21
A Finnish-Swedish research group at the Institute for Molecular Medicine Finland (FIMM), University of Helsinki, and Karolinska institutet, Stockholm, has developed a novel "man and machine" decision support system for diagnosing malaria infection. This innovative diagnostic aid was described in PLOS One scientific journal today, 21 August. The method is based on computer vision algorithms similar to those used in facial recognition systems combined with visualization of only the diagnostically most relevant areas. Tablet computers can be utilized in viewing the images. In ...

Scientists observe quantum vortices in cold helium droplets

2014-08-21
An international research team including DESY scientists has observed tiny quantum vortices in cold droplets of liquid helium. The team reports in the journal Science that the exotic vortices arrange themselves as densely packed lattices inside the nanodroplets. It is the first time that the quantum vortices, which have already been observed in larger samples of what is known as superfluid helium, have been detected in nanodroplets. "The experiment has exceeded our best expectations," says Andrey Vilesov of the University of Southern California, one of the experiment's ...

Hot-spring bacteria reveal ability to use far-red light for photosynthesis

Hot-spring bacteria reveal ability to use far-red light for photosynthesis
2014-08-21
Bacteria growing in near darkness use a previously unknown process for harvesting energy and producing oxygen from sunlight, a research team led by a Penn State University scientist has discovered. The discovery lays the foundation for further research aimed at improving plant growth, harvesting energy from the Sun, and understanding dense blooms like those now occurring on Lake Erie and other lakes worldwide. A paper describing the discovery will be published in the Science Express edition of the journal Science on 21 August 2014. "We have shown that some cyanobacteria, ...

New DNA test for diagnosing diseases linked to childhood blindness

2014-08-21
SAN FRANCISCO – Aug. 21, 2014 – Researchers in the United Kingdom have demonstrated that advanced DNA testing for congenital cataracts can quickly and accurately diagnose a number of rare diseases marked by childhood blindness, according to a study published online today in Ophthalmology, the journal of the American Academy of Ophthalmology. Using a single test, doctors were able to tailor care specifically to a child's condition based on their mutations reducing the time and money spent on diagnosis and enabling earlier treatment and genetic counseling. Each year, ...

LAST 30 PRESS RELEASES:

Aortic hemiarch reconstruction safely matches complex aortic arch reconstruction for acute dissection in older adults

Destination Earth digital twin to improve AI climate and weather predictions

Late-breaking study finds comparable long-term survival between two leading multi-arterial CABG strategies

Lymph node examination should be expanded to accurately assess cancer spread in patients with lung cancer

Study examines prediction of surgical risk in growing population of adults with congenital heart disease

Novel radiation therapy QA method: Monte Carlo simulation meets deep learning for fast, accurate epid transmission dose generation

A 100-fold leap into the unknown: a new search for muonium conversion into antimuonium

A new approach to chiral α-amino acid synthesis - photo-driven nitrogen heterocyclic carbene catalyzed highly enantioselective radical α-amino esterification

Physics-defying discovery sheds new light on how cells move

Institute for Data Science in Oncology announces new focus-area lead for advancing data science to reduce public cancer burden

Mapping the urban breath

Waste neem seeds become high-performance heat batteries for clean energy storage

Scientists map the “physical genome” of biochar to guide next generation carbon materials

Mobile ‘endoscopy on wheels’ brings lifesaving GI care to rural South Africa

Taming tumor chaos: Brown University Health researchers uncover key to improving glioblastoma treatment

Researchers enable microorganisms to build molecules with light

Laws to keep guns away from distressed individuals reduce suicides

Study shows how local business benefits from city services

RNA therapy may be a solution for infant hydrocephalus

Global Virus Network statement on Nipah virus outbreak

A new molecular atlas of tau enables precision diagnostics and drug targeting across neurodegenerative diseases

Trends in US live births by race and ethnicity, 2016-2024

Sex and all-cause mortality in the US, 1999 to 2019

Nasal vaccine combats bird flu infection in rodents

Sepsis study IDs simple ways to save lives in Africa

“Go Red. Shop with Heart.” to save women’s lives and support heart health this February

Korea University College of Medicine successfully concludes the 2025 Lee Jong-Wook Fellowship on Infectious Disease Specialists Program

Girls are happiest at school – for good reasons

Researchers from the University of Maryland School of Medicine discover genetic ancestry is a critical component of assessing head and neck cancerous tumors

Can desert sand be used to build houses and roads?

[Press-News.org] How hummingbirds evolved to detect sweetness