PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Stanford researchers work to understand gene expression across organisms

2014-08-27
(Press-News.org) Fruit flies and roundworms have long been used as model organisms to learn more about human biology and disease. Now, researchers at the Stanford University School of Medicine have found that although many aspects of regulatory networks are conserved among the three distantly related organisms, other differences have emerged over evolutionary time.

These differences may explain why, for example, worms slither, flies fly and humans walk on two legs, even though they all use the same basic genetic building blocks.

"We're trying to understand the basic principles that govern how genes are turned on and off," said Michael Snyder, PhD, professor and chair of genetics at Stanford. "The worm and the fly have been the premier model organisms in biology for decades, and have provided the foundation for much of what we've learned about human biology. If we can learn how the rules of gene expression evolved over time, we can apply that knowledge to better understand human biology and disease."

The research was conducted as part of a multi-institutional collaborative effort to understand more about how organisms control the expression of their genes to generate neurons, muscles, skin, blood and all of the other types of cells and tissues necessary for complex life — all at the exactly the right time and place in the body.

The research is an extension of the ENCODE, or Encyclopedia of DNA Elements, project that was initiated in 2003. As part of the large collaborative project, which was sponsored by the National Human Genome Research Institute, researchers published more than 4 million regulatory elements found within the human genome in 2012. Known as binding sites, these regions of DNA serve as landing pads for proteins and other molecules known as regulatory factors that control when and how genes are used to make proteins.

The new effort, known as modENCODE, brings a similar analysis to key model organisms like the fly and the worm. Snyder is the senior author of two of four papers that will be published Aug. 28 in Nature describing some aspects of the modENCODE project, which has led to the publication, or upcoming publication, of more than 20 papers in a variety of journals.

Postdoctoral scholar Carlos Araya, PhD, is the lead author of one of the Stanford papers, which mapped the binding sites and cellular expression patterns of 92 regulatory factors in the laboratory roundworm C. elegans. Postdoctoral scholar Alan Boyle, PhD, shares lead authorship with Araya on the second paper, which compares the newly generated roundworm data with human and fruit fly regulatory factors to identify regions of similarity and difference among the organisms. Research associate Trupti Kawli, PhD, coordinated the research in the Snyder lab and is a co-author of both papers.

The researchers compared this information between the fly and the worm at several stages of development to learn which proteins and DNA regions are most important at each stage. They also identified which individual cells within the worm were generating, and using, the regulatory factors at each stage.

"For the first time we're now able to follow in detail where and when particular regions in the genome are used to regulate gene expression, and we can map the cells in which they are operating with an unprecedented level of accuracy," said Snyder, who is also the Stanford W. Ascherman, MD, FACS, Professor in Genetics.

Many of the regulatory networks or "rules" identified by the researchers are shared among the three organisms. For example, most genes in all three organisms have what are known as HOT — high-occupancy target — spots in nearby DNA. These HOT spots contain clusters of regulatory regions important for the control of gene expression. However, the identities of the regulatory elements bound to the sites differed according to the stage of development of the organism, the cell type and the three-dimensional structure of the DNA at that location.

The exact protein players and DNA sequences involved in binding to or serving as the HOT spots also often differed among human, fly and worm — perhaps reflecting different evolutionary pressures. Those differences are a likely reason why flies, worms and humans are so distinct in shape, size, and behavior for example.

The wealth of data from the modENCODE project will fuel research projects for decades to come, according to Snyder.

"We now have one of the most complete pictures ever generated of the regulatory regions and factors in several genomes," said Snyder. "This knowledge will be invaluable to researchers in the field."

INFORMATION: Additional Stanford authors are postdoctoral scholars Dan Xie, PhD, and Yong Cheng, PhD; research assistants Lixia Jiang and Beijing Wu; former research associate Cathleen Brdlik, PhD; software developer Philip Cayting; and assistant professor of genetics and of computer science Anshul Kundaje, PhD.

The study was supported by the National Human Genome Research Institute (grants U01HG004264, RC2HG005679, P50GM081892, U54HG006996, U54HG004558, U01HG004267 and F32GM101778).

Information about Stanford's Department of Genetics, which also supported the work, is available at: http://genetics.stanford.edu.

Print media contact: Krista Conger at (650) 725-5371 (kristac@stanford.edu) Broadcast media contact: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Health Care and Lucile Packard Children's Hospital Stanford. For information about all three, please visit http://stanfordmedicine.org/about/news.html.


ELSE PRESS RELEASES FROM THIS DATE:

Evolution used similar molecular toolkits to shape flies, worms, and humans

2014-08-27
Although separated by hundreds of millions of years of evolution, flies, worms, and humans share ancient patterns of gene expression, according to a massive Yale-led analysis of genomic data. Two related studies led by scientists at Harvard and Stanford, also published Aug. 28 in the same issue of the journal Nature, tell a similar story: Even though humans, worms, and flies bear little obvious similarity to each other, evolution used remarkably similar molecular toolkits to shape them. However, the same Yale lab reports in a separate paper published in the Proceedings ...

Neuroscientists reverse memories' emotional associations

2014-08-27
CAMBRIDGE, MA -- Most memories have some kind of emotion associated with them: Recalling the week you just spent at the beach probably makes you feel happy, while reflecting on being bullied provokes more negative feelings. A new study from MIT neuroscientists reveals the brain circuit that controls how memories become linked with positive or negative emotions. Furthermore, the researchers found that they could reverse the emotional association of specific memories by manipulating brain cells with optogenetics — a technique that uses light to control neuron activity. The ...

Scientists map the 'editing marks' on fly, worm, human genomes

2014-08-27
The genome we inherited from our parents shapes many aspects of our lives. But in addition to our genome we have an epigenome that is set during development, but can be altered by our lifestyle habits and environmental exposures—and perhaps by those of our parents and grandparents. The epigenome consists of chemical tags on our DNA and supporting proteins that determine whether genes are expressed or silenced. This means we are deeply responsible for our own health, but also that it may be possible to diagnose and treat the many diseases caused by the deregulation of ...

Researchers switch emotion linked to memory

2014-08-27
Recalling an emotional experience, even years later, can bring back the same intense feelings. Researchers from the RIKEN-MIT Center for Neural Circuit Genetics revealed the brain pathway that links external events to the internal emotional state, forming one memory by engaging different brain areas. The study published in the journal Nature, also demonstrates that the positive or negative emotional valence of memory can be reversed during later memory recall. The research team, led by Dr. Susumu Tonegawa, was interested in how brain structures like the hippocampus ...

Breaking benzene

2014-08-27
Aromatic compounds are found widely in natural resources such as petroleum and biomass, and breaking the carbon?carbon bonds in these compounds plays an important role in the production of fuels and valuable chemicals from natural resources. However, aromatic carbon-carbon bonds are very stable and difficult to break. In the chemical industry, the cleavage of these bonds requires the use of solid catalysts at high temperatures, usually giving rise to a mixture of products, and the mechanisms are still poorly understood. Now, in research published in Nature, Zhaomin Hou ...

Walking fish reveal how our ancestors evolved onto land

Walking fish reveal how our ancestors evolved onto land
2014-08-27
VIDEO: Polypterus senegalus walks across a sandy substrate. Fish use their fins and body in combination to move across a terrestrial substrate. Fins are planted one after the other to lift... Click here for more information. About 400 million years ago a group of fish began exploring land and evolved into tetrapods – today's amphibians, reptiles, birds, and mammals. But just how these ancient fish used their fishy bodies and fins in a terrestrial environment and what evolutionary ...

NIH issues finalized policy on genomic data sharing

2014-08-27
The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while protecting the privacy of research participants. The final policy was posted in the Federal Register Aug. 26, 2014 and published in the NIH Guide for Grants and Contracts Aug. 27, 2014. Starting with funding applications submitted for a Jan. 25, 2015, receipt date, the policy will apply to all NIH-funded, large-scale human and non-human projects that ...

Scientists looking across human, fly and worm genomes find shared biology

2014-08-27
Researchers analyzing human, fly, and worm genomes have found that these species have a number of key genomic processes in common, reflecting their shared ancestry. The findings, appearing Aug. 28, 2014, in the journal Nature, offer insights into embryonic development, gene regulation and other biological processes vital to understanding human biology and disease. The studies highlight the data generated by the modENCODE Project and the ENCODE Project, both supported by the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health. ...

Worms, flies and humans... Our common genomic legacy, key to understanding cell biology

2014-08-27
This news release is available in Spanish. Genomes accumulate changes and mutations throughout evolution. These changes have resulted in a huge diversity of species and in different traits between us. But animal cells, whether they are from a fly or a human, work similarly: they have common molecular mechanisms. Based on this premise, an international consortium with participation of scientists from the Centre for Genomic Regulation in Barcelona have compared the transcriptome (the RNA complement of a species' cell) of different animal species. They used data from ...

Snowfall in a warmer world

2014-08-27
If ever there were a silver lining to global warming, it might be the prospect of milder winters. After all, it stands to reason that a warmer climate would generate less snow. But a new MIT study suggests that you shouldn't put your shovels away just yet. While most areas in the Northern Hemisphere will likely experience less snowfall throughout a season, the study concludes that extreme snow events will still occur, even in a future with significant warming. That means that, for example, places like Boston may see less snowy winters overall, punctuated in some years ...

LAST 30 PRESS RELEASES:

High exposure to everyday chemicals linked to asthma risk in children

How can brands address growing consumer scepticism?

New paradigm of quantum information technology revealed through light-matter interaction!

MSU researchers find trees acclimate to changing temperatures

World's first visual grading system developed to combat microplastic fashion pollution

Teenage truancy rates rise in English-speaking countries

Cholesterol is not the only lipid involved in trans fat-driven cardiovascular disease

Study: How can low-dose ketamine, a ‘lifesaving’ drug for major depression, alleviate symptoms within hours? UB research reveals how

New nasal vaccine shows promise in curbing whooping cough spread

Smarter blood tests from MSU researchers deliver faster diagnoses, improved outcomes

Q&A: A new medical AI model can help spot systemic disease by looking at a range of image types

For low-risk pregnancies, planned home births just as safe as birth center births, study shows

Leaner large language models could enable efficient local use on phones and laptops

‘Map of Life’ team wins $2 million prize for innovative rainforest tracking

Rise in pancreatic cancer cases among young adults may be overdiagnosis

New study: Short-lived soda tax reinforces alternative presumptions on tax impacts on consumer behaviors

Fewer than 1 in 5 know the 988 suicide lifeline

Semaglutide eligibility across all current indications for US adults

Can podcasts create healthier habits?

Zerlasiran—A small-interfering RNA targeting lipoprotein(a)

Anti-obesity drugs, lifestyle interventions show cardiovascular benefits beyond weight loss

Oral muvalaplin for lowering of lipoprotein(a)

Revealing the hidden costs of what we eat

New therapies at Kennedy Krieger offer effective treatment for managing Tourette syndrome

American soil losing more nutrients for crops due to heavier rainstorms, study shows

With new imaging approach, ADA Forsyth scientists closely analyze microbial adhesive interactions

Global antibiotic consumption has increased by more than 21 percent since 2016

New study shows how social bonds help tool-using monkeys learn new skills

Modeling and analysis reveals technological, environmental challenges to increasing water recovery from desalination

Navy’s Airborne Scientific Development Squadron welcomes new commander

[Press-News.org] Stanford researchers work to understand gene expression across organisms