PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Fingertip sensor gives robot unprecedented dexterity

Equipped with a novel optical sensor, a robot grasps a USB plug and inserts it into a USB port.

2014-09-19
(Press-News.org) CAMBRIDGE, Mass-- Researchers at MIT and Northeastern University have equipped a robot with a novel tactile sensor that lets it grasp a USB cable draped freely over a hook and insert it into a USB port.

The sensor is an adaptation of a technology called GelSight, which was developed by the lab of Edward Adelson, the John and Dorothy Wilson Professor of Vision Science at MIT, and first described in 2009. The new sensor isn't as sensitive as the original GelSight sensor, which could resolve details on the micrometer scale. But it's smaller — small enough to fit on a robot's gripper — and its processing algorithm is faster, so it can give the robot feedback in real time.

Industrial robots are capable of remarkable precision when the objects they're manipulating are perfectly positioned in advance. But according to Robert Platt, an assistant professor of computer science at Northeastern and the research team's robotics expert, for a robot taking its bearings as it goes, this type of fine-grained manipulation is unprecedented.

"People have been trying to do this for a long time," Platt says, "and they haven't succeeded because the sensors they're using aren't accurate enough and don't have enough information to localize the pose of the object that they're holding."

The researchers presented their results at the International Conference on Intelligent Robots and Systems this week. The MIT team — which consists of Adelson; first author Rui Li, a PhD student; Wenzhen Yuan, a master's student; and Mandayam Srinivasan, a senior research scientist in the Department of Mechanical Engineering — designed and built the sensor. Platt's team at Northeastern developed the robotic controller and conducted the experiments.

Synesthesia

Whereas most tactile sensors use mechanical measurements to gauge mechanical forces, GelSight uses optics and computer-vision algorithms.

"I got interested in touch because I had children," Adelson says. "I expected to be fascinated by watching how they used their visual systems, but I was actually more fascinated by how they used their fingers. But since I'm a vision guy, the most sensible thing, if you wanted to look at the signals coming into the finger, was to figure out a way to transform the mechanical, tactile signal into a visual signal — because if it's an image, I know what to do with it."

A GelSight sensor — both the original and the new, robot-mounted version — consists of a slab of transparent, synthetic rubber coated on one side with a metallic paint. The rubber conforms to any object it's pressed against, and the metallic paint evens out the light-reflective properties of diverse materials, making it much easier to make precise optical measurements.

In the new device, the gel is mounted in a cubic plastic housing, with just the paint-covered face exposed. The four walls of the cube adjacent to the sensor face are translucent, and each conducts a different color of light — red, green, blue, or white — emitted by light-emitting diodes at the opposite end of the cube. When the gel is deformed, light bounces off of the metallic paint and is captured by a camera mounted on the same cube face as the diodes.

From the different intensities of the different-colored light, the algorithms developed by Adelson's team can infer the three-dimensional structure of ridges or depressions of the surface against which the sensor is pressed.

Although there are several ways of measuring human tactile acuity, one is to determine how far apart two small bumps need to be before a subject can distinguish them just by touching; the answer is usually about a millimeter. By that measure, even the lower-resolution, robot-mounted version of the GelSight sensor is about 100 times more sensitive than a human finger.

Plug 'n play

In Platt's experiments, a Baxter robot from MIT spinout Rethink Robotics was equipped with a two-pincer gripper, one of whose pincers had a GelSight sensor on its tip. Using conventional computer-vision algorithms, the robot identified the dangling USB plug and attempted to grasp it. It then determined the position of the USB plug relative to its gripper from an embossed USB symbol. Although there was a 3-millimeter variation, in each of two dimensions, in where the robot grasped the plug, it was still able to insert it into a USB port that tolerated only about a millimeter's error.

"As roboticists, we are always looking for new sensors," Lee adds. "This is a promising prototype. It could be developed into practical device."

INFORMATION: Written by Larry Hardesty, MIT News Office


ELSE PRESS RELEASES FROM THIS DATE:

Mayo researchers reveal pathway that contributes to Alzheimer's disease

2014-09-19
JACKSONVILLE, Fla. — Researchers at Jacksonville's campus of Mayo Clinic have discovered a defect in a key cell-signaling pathway they say contributes to both overproduction of toxic protein in the brains of Alzheimer's disease patients as well as loss of communication between neurons — both significant contributors to this type of dementia. Their study, in the online issue of Neuron, offers the potential that targeting this specific defect with drugs "may rejuvenate or rescue this pathway," says the study's lead investigator, Guojun Bu, Ph.D., a neuroscientist at Mayo ...

A refined approach to proteins at low resolution

A refined approach to proteins at low resolution
2014-09-19
Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because their very nature means they are highly flexible. The result is that when a structure can be obtained it is often of low resolution, ambiguous and reveals a mosaic-like spread of protein domains that sometimes create more puzzles than they solve. [Schröder, Levitt & Brunger. (2014), Acta Cryst. D70, 2241-2255; doi: 10.1107/S1399004714016496 ] Now, Gunnar Schröder ...

Reflected smartphone transmissions enable gesture control

Reflected smartphone transmissions enable gesture control
2014-09-19
With almost all of the U.S. population armed with cellphones – and close to 80 percent carrying a smartphone – mobile phones have become second-nature for most people. What's coming next, say University of Washington researchers, is the ability to interact with our devices not just with touchscreens, but through gestures in the space around the phone. Some smartphones are starting to incorporate 3-D gesture sensing based on cameras, for example, but cameras consume significant battery power and require a clear view of the user's hands. UW engineers have developed a ...

Patients with advanced, incurable cancer denied palliative care

2014-09-19
Many patients with advanced, incurable cancer do not receive any palliative care, reveals new research to be presented later this month at the ESMO 2014 Congress in Madrid, Spain, 26-30 September. The findings are astonishing as they come at the same time as 15 new oncology centres in Europe, Canada, South America and Africa are being awarded the prestigious title of 'ESMO Designated Centre of Integrated Oncology and Palliative Care.' SR I Dr Alexandru Grigorescu, medical oncology consultant at the Institute of Oncology Bucharest, Romania, member of the ESMO Palliative ...

Graphene sensor tracks down cancer biomarkers

Graphene sensor tracks down cancer biomarkers
2014-09-19
An ultrasensitive biosensor made from the wonder material graphene has been used to detect molecules that indicate an increased risk of developing cancer. The biosensor has been shown to be more than five times more sensitive than bioassay tests currently in use, and was able to provide results in a matter of minutes, opening up the possibility of a rapid, point-of-care diagnostic tool for patients. The biosensor has been presented today, 19 September, in IOP Publishing's journal 2D Materials. To develop a viable bionsensor, the researchers, from the University of ...

Simple test can help detect Alzheimer's before dementia signs show: York U study

2014-09-19
TORONTO, Sept. 19, 2014 — York University researchers say a simple test that combines thinking and movement can help to detect heightened risk for developing Alzheimer's disease in a person, even before there are any telltale behavioural signs of dementia. Faculty of Health Professor Lauren Sergio and PhD candidate Kara Hawkins who led the study asked the participants to complete four increasingly demanding visual-spatial and cognitive-motor tasks, on dual screen laptop computers. The test aimed at detecting the tendency for Alzheimer's in those who were having cognitive ...

Shrink-wrapping spacesuits

2014-09-19
For future astronauts, the process of suiting up may go something like this: Instead of climbing into a conventional, bulky, gas-pressurized suit, an astronaut may don a lightweight, stretchy garment, lined with tiny, musclelike coils. She would then plug in to a spacecraft's power supply, triggering the coils to contract and essentially shrink-wrap the garment around her body. The skintight, pressurized suit would not only support the astronaut, but would give her much more freedom to move during planetary exploration. To take the suit off, she would only have to apply ...

New hadrosaur noses into spotlight

New hadrosaur noses into spotlight
2014-09-19
Call it the Jimmy Durante of dinosaurs – a newly discovered hadrosaur with a truly distinctive nasal profile. The new dinosaur, named Rhinorex condrupus by paleontologists from North Carolina State University and Brigham Young University, lived in what is now Utah approximately 75 million years ago during the Late Cretaceous period. Rhinorex, which translates roughly into "King Nose," was a plant-eater and a close relative of other Cretaceous hadrosaurs like Parasaurolophus and Edmontosaurus. Hadrosaurs are usually identified by bony crests that extended from the skull, ...

Researchers discover new gene responsible for traits involved in diabetes

2014-09-19
A collaborative research team led by Medical College of Wisconsin (MCW) scientists has identified a new gene associated with fasting glucose and insulin levels in rats, mice and in humans. The findings are published in the September issue of Genetics. Leah Solberg Woods, Ph.D., associate professor of pediatrics at MCW and a researcher in the Children's Hospital of Wisconsin Research Institute, led the study and is the corresponding author of the paper. The authors of the paper identified a gene called Tpcn2 in which a variant was associated with fasting glucose levels ...

Don't cry wolf: Drivers fed up with slowing down at inactive roadwork sites

2014-09-19
The results of the QUT Centre for Accident Research & Road Safety - Queensland (CARRS-Q) study have been presented at the Occupational Safety in Transport Conference (OSIT) which is being held on the Gold Coast and finishes today. Dr Ross Blackman, a CARRS-Q road safety researcher, said speed limit credibility was being put at risk when reduced speed limits and related traffic controls remained in place at inactive roadwork sites. "It's seen as crying wolf. If people are asked to slow down at roadwork sites but find there is no roadwork being undertaken they become ...

LAST 30 PRESS RELEASES:

New perspective highlights urgent need for US physician strike regulations

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions

Radon exposure and gestational diabetes

EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society

Medicare rules may reduce prescription steering

Red light linked to lowered risk of blood clots

[Press-News.org] Fingertip sensor gives robot unprecedented dexterity
Equipped with a novel optical sensor, a robot grasps a USB plug and inserts it into a USB port.