PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

New computational approach finds gene that drives aggressive brain cancer

Analysis also reveals new genes involved in breast cancer and Alzheimer's

New computational approach finds gene that drives aggressive brain cancer
2014-10-09
(Press-News.org) NEW YORK, NY (October 9, 2014)—Using an innovative algorithm that analyzes gene regulatory and signaling networks, Columbia University Medical Center (CUMC) researchers have found that loss of a gene called KLHL9 is the driving force behind the most aggressive form of glioblastoma, the most common form of brain cancer. The CUMC team demonstrated in mice transplants that these tumors can be suppressed by reintroducing KLHL9 protein, offering a possible strategy for treating this lethal disease. The study was published today in the online issue of Cell.

The team used the same approach to identify mutations and heritable variants that have been linked to breast cancer and Alzheimer's disease, suggesting that the algorithm, combined with the researchers' sophisticated computer models of cellular regulation, is a powerful method for identifying genetic drivers of a wide range of diseases.

"This algorithm adds a new dimension to our ability to identify the genetic causes of complex disease. When combined with other tools that our lab has developed, it will help identify many more genes that hold potential as genetic biomarkers of disease progression and targets for treatment," said study leader Andrea Califano, PhD, the Clyde and Helen Wu Professor of Chemical Biology (in Biomedical Informatics and the Institute for Cancer Genetics), chair of the Department of Systems Biology, and director of the JP Sulzberger Columbia Genome Center, at Columbia's College of Physicians and Surgeons.

In previous studies, Dr. Califano and his colleagues used high-power computer models to demonstrate that certain types of cancer have highly conserved "master regulators"—genes whose individual or synergistic activity is necessary for disease to develop and persist. However, these models provided no information on the key genetic mutations that presumably drive the abnormal activity of these master regulators.

In the current study, the team combined its existing computational tools with a new algorithm called DIGGIT (for Driver-Gene Inference by Genetical-Genomic Information Theory), which "walks" backward from the master regulators to find the genetic events that drive cancer.

"Conventional techniques, like genome-wide association studies, must test all possible genetic mutations and variants in a disease cell, compared with a normal cell," said lead author James C. Chen, PhD, a postdoctoral research scientist in Dr. Califano's laboratory, who developed DIGGIT. "These can number in the tens to hundreds of thousands. As a result, based on the number of patients we have profiled, we have sufficient statistical power to identify only the most striking mutations. The DIGGIT algorithm, combined with what we know about regulatory events in the cell, can help us sort through this mass of data and identify critical hidden mutations that otherwise would have gone undetected."

The new approach was tested on mesenchymal glioblastoma, the most aggressive subtype of the disease, by jointly analyzing the gene expression and mutational profile data of more than 250 patients collected by the Cancer Genome Atlas consortium.

The CUMC team found two genes—C/EBPδ and KLHL9—that appear to activate glioblastoma's master regulators. C/EBPδ, had already been identified by the labs of Dr. Califano and of Antonio Iavarone, MD, professor of neurology and of pathology & cell biology (in the Institute for Cancer Genetics), as a master regulator of the disease, so the researchers focused on KLHL9, which had never been tied to this or any other form of cancer.

In subsequent laboratory studies, the researchers reactivated the defective KLHL9 gene in aggressive glioblastoma cells, which was sufficient to lose the mesenchymal phenotype. When KLHL9 protein was reintroduced into mice receiving direct transplants from patients with mesenchymal glioblastoma, their tumors regressed, providing further evidence that KLHL9 mutations (which were found in 50 percent of the mesenchymal glioblastoma patients), are directly responsible for driving this cancer subtype.

DIGGIT may be applicable to other complex diseases. In further studies by the Califano team, the algorithm identified 35 genes as drivers of breast cancer. Of the 25 genes previously identified in the literature, 19 (76 percent) were identified by DIGGIT, confirming that the algorithm is capable of capturing driver mutations in other types of cancer. The analysis also revealed several novel genes that may warrant further investigation. In a study of Alzheimer's disease, DIGGIT found 14 genetic variants that appear to drive the condition, including the APOE locus, a well-known variant associated with Alzheimer's, and TYROBP, a gene also validated as an Alzheimer's risk variant. DIGGIT also identified novel variants, including those in four genes in the integrin pathway, that had not been previously connected with the disease and that are currently being investigated.

"It's important to stress that this constitutes an important improvement over traditional gene-association studies. The latter can identify statistical associations between mutations and disease, but cannot explain how the mutation drives that effect," said Dr. Califano. "Because DIGGIT identifies disease-causing genes by tracing their aberrant activity through the regulatory network of the cell, it provides direct information on the specific molecular interactions through which a genetic mutation causes disease—the 'mechanism.' In traditional research, this process can take years, if not decades."

"Even in our studies of breast cancer and Alzheimer's disease, where the goal was simply to show that DIGGIT could identify mutations and variants missed by conventional statistical methods, the algorithm identified the key molecular regulators and pathways through which these mutations likely work to drive disease, adding significant new knowledge that can be rapidly tested in the lab" Dr. Chen said.

Columbia University Medical Center (CUMC) researchers have combined existing computational tools with a new algorithm called DIGGIT (for Driver-Gene Inference by Genetical-Genomic Information Theory), which "walks" backward from the master regulators to find the genetic events that drive cancer. (Image credit: CUMC)

INFORMATION:

The article is titled, "Identification of causal genetic drivers of human disease through systems-level analysis of regulatory networks." The other authors are: Mariano J. Alvarez (CUMC), Flaminia Talos (CUMC), Harshil Dhruv (TGen, Phoenix, AZ), Gabrielle E. Rieckhof (CUMC), Archana Iyer (CUMC), Kristin L. Diefes (University of Texas, Houston, TX), Kenneth Aldape (University of Toronto, Toronto, Canada), Michael Berens (TGen), and Michael M. Shen (CUMC).

The study was supported by a grant from the National Cancer Institute (1RC2CA148308-01) and the National Centers for Biomedical Computing NIH Roadmap Initiative (U54CA121852, R01 NS061776-05, and P01CA154293).

The authors declare no financial or other conflicts of interest.

Herbert Irving Comprenhensive Cancer Center at NewYork-Presbyterian Hospital/ Columbia University Medical Center encompasses pre-clinical and clinical research, treatment, prevention and education efforts in cancer. The Cancer Center was initially funded by the NCI in 1972 and became a National Cancer Institute (NCI)–designated comprehensive cancer center in 1979. The designation recognizes the Center's collaborative environment and expertise in harnessing translational research to bridge scientific discovery to clinical delivery, with the ultimate goal of successfully introducing novel diagnostic, therapeutic and preventive approaches to cancer. For more information, visit http://www.hiccc.columbia.edu. Columbia University Medical Center provides international leadership in basic, preclinical, and clinical research; medical and health sciences education; and patient care. The medical center trains future leaders and includes the dedicated work of many physicians, scientists, public health professionals, dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of Public Health, the College of Dental Medicine, the School of Nursing, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. Columbia University Medical Center is home to the largest medical research enterprise in New York City and State and one of the largest faculty medical practices in the Northeast.


[Attachments] See images for this press release:
New computational approach finds gene that drives aggressive brain cancer

ELSE PRESS RELEASES FROM THIS DATE:

Scientists discover a 'good' fat that fights diabetes

Scientists discover a good fat that fights diabetes
2014-10-09
VIDEO: Salk researchers explain how a new class of lipids may be tied to diabetes. Click here for more information. LA JOLLA—Scientists at the Salk Institute and Beth Israel Deaconess Medical Center (BIDMC) in Boston have discovered a new class of molecules—produced in human and mouse fat—that protects against diabetes. The researchers found that giving this new fat, or lipid, to mice with the equivalent of type 2 diabetes lowered their elevated blood sugar, ...

Long-term treatment success using gene therapy to correct a lethal metabolic disorder

Long-term treatment success using gene therapy to correct a lethal metabolic disorder
2014-10-09
New Rochelle, NY, October 9, 2014—Excessive and often lethal blood levels of bilirubin can result from mutations in a single gene that are the cause of the metabolic disease known as Crigler-Najjar syndrome type 1 (CNS1). A new gene therapy approach to correcting this metabolic error achieved significant, long-lasting reductions in bilirubin levels in a mouse model of CNS1 and is described in an Open Access article in Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available on the Human Gene Therapy website at http://online.liebertpub.com/doi/full/10.1089/hum.2013.233. ...

Clove oil tested for weed control in organic Vidalia sweet onion

2014-10-09
TIFTON, GA – Weed control is one of the most challenging aspects of organic crop production. Most growers of certified organic crops rely heavily on proven cultural and mechanical weed control methods while limiting the use of approved herbicides. A new study of herbicides derived from clove oil tested the natural products' effectiveness in controlling weeds in Vidalia® sweet onion crops. "Cultivation with a tine weeder and hand weeding are the primary tools currently used for weed control in organic sweet onion (Allium ceps)," explained scientist W. Carroll ...

Wild tomato species focus of antioxidant study

Wild tomato species focus of antioxidant study
2014-10-09
IZMIR, TURKEY – Tomatoes are known to be rich in antioxidants such as vitamin C, lycopene, β-carotene, and phenolics. Antioxidants, substances capable of delaying or inhibiting oxidation processes caused by free radicals, are of interest to consumers for their health-related contributions, and to plant breeders for their ability to provide plants with natural resistance to biotic and abiotic stresses. While tomato domestication and breeding programs have typically focused on traits such as fruit weight, color, shape, and disease resistance, scientists are now ...

Study examines effect of antibiotic susceptibility for patients with bloodstream infection

2014-10-09
In an analysis of more than 8,000 episodes of Staphylococcus aureus bloodstream infections, there were no significant differences in the risk of death when comparing patients exhibiting less susceptibility to the antibiotic vancomycin to patients with more vancomycin susceptible strains of S. aureus, according to a study published in JAMA. The study is being released early online to coincide with the IDWeek 2014 meeting. Staphylococcus aureus is among the most common causes of health care-associated infection throughout the world. It causes a wide range of infections, ...

Hospitalized children benefit from antibiotic stewardship programs

2014-10-09
PHILADELPHIA – Hospitalized children go home sooner and are less likely to be readmitted when the hospital has an antibiotic stewardship program that's dedicated to controlling antibiotic prescriptions and treatment, according to a study being presented at IDWeek 2014™. The study is the first to show the benefits of such programs on children's health. Antibiotic stewardship programs are increasingly being used to manage how and when antibiotics are being prescribed in hospitals and other health care facilities across the country. Often led by epidemiologists or ...

Chemists uncover new role of a key base in organic synthesis

2014-10-09
An international team of chemists has discovered a new piece to the puzzle of how a powerful base used in organic synthesis, cesium carbonate, plays a pivotal role during a catalytic reaction. The research, published by the Journal of the American Chemical Society, was led by Jamal Musaev, a theoretical chemist at Emory University, and Ken Itami, an experimental chemist from Nagoya University in Japan. Sun Yat-Sen University in Guangzhou, China, also contributed to the findings. Many organic chemistry reactions are acid/base reactions, involving the exchange of positively ...

NASA eyes Tropical Cyclone Hudhud as Warnings posted for East-Central India

NASA eyes Tropical Cyclone Hudhud as Warnings posted for East-Central India
2014-10-09
NASA's Aqua satellite flew over Tropical Cyclone Hudhud on Oct. 9 and took a picture of the storm that showed it was still somewhat elongated, but more organized than the previous day. Another NASA satellite provided the hint of a developing eye. Warnings for winds, rain and surf are already in effect for the northern Andhra Pradesh coast and south Odisha coastline of eastern India as Hudhud approaches. Tropical Cyclone Hudhud formed on Oct. 8 and began moving from east to west across the Bay of Bengal, Northern Indian Ocean. On Oct. 9 at 07:45 UTC (3:45 a.m. EDT), ...

Discovery of new subatomic particle sheds light on fundamental force of nature

2014-10-09
The discovery of a new particle will "transform our understanding" of the fundamental force of nature that binds the nuclei of atoms, researchers argue. Led by scientists from the University of Warwick, the discovery of the new particle will help provide greater understanding of the strong interaction, the fundamental force of nature found within the protons of an atom's nucleus. Named Ds3*(2860)ˉ, the particle, a new type of meson, was discovered by analysing data collected with the LHCb detector at CERN's Large Hadron Collider (LHC) . The new particle ...

Satellite movie shows Hurricane Simon's remnants moving through US

Satellite movie shows Hurricane Simons remnants moving through US
2014-10-09
VIDEO: This animation from NOAA's GOES-East satellite over Oct. 6 through Oct. 9 shows Hurricane Simon's landfall and movement into the US Southwest. Click here for more information. NOAA's GOES-East satellite has captured visible and infrared images of Hurricane Simon since birth, and a new animation of the data created by NASA shows Simon's landfall in Mexico and movement into the U.S. Southwest. The remnants are expected to move into the U.S. central Plains and Midwest ...

LAST 30 PRESS RELEASES:

Exposure to stress during early pregnancy affects offspring into adulthood

Curious blue rings in trees and shrubs reveal cold summers of the past — potentially caused by volcanic eruptions

New frontiers in organic chemistry: Synthesis of a promising mushroom-derived compound

Biodegradable nylon precursor produced through artificial photosynthesis

GenEditScan: novel k-mer analysis tool based on next-generation sequencing for foreign DNA detection in genome-edited products

Survey: While most Americans use a device to monitor their heart, few share that data with their doctor

Dolphins use a 'fat taste' system to get their mother’s milk

Clarifying the mechanism of coupled plasma fluctuations using simulations

Here’s what’s causing the Great Salt Lake to shrink, according to PSU study

Can DNA-nanoparticle motors get up to speed with motor proteins?

Childhood poverty and/or parental mental illness may double teens’ risk of violence and police contact

Fizzy water might aid weight loss by boosting glucose uptake and metabolism

Muscular strength and good physical fitness linked to lower risk of death in people with cancer

Recommendations for studying the impact of AI on young people's mental health  proposed by Oxford researchers

Trump clusters: How an English lit graduate used AI to make sense of Twitter bios

Empty headed? Largest study of its kind proves ‘bird brain’ is a misnomer

Wild baboons not capable of visual self-awareness when viewing their own reflection

$14 million supports work to diversify human genome research

New study uncovers key mechanism behind learning and memory

Seeing the unseen: New method reveals ’hyperaccessible’ window in freshly replicated DNA

Extreme climate pushed thousands of lakes in West Greenland ‘across a tipping point,’ study finds

Illuminating an asymmetric gap in a topological antiferromagnet

Global public health collaboration benefits Americans, SHEA urges continued support of the World Health Organization

Astronomers thought they understood fast radio bursts. A recent one calls that into question.

AAAS announces addition of Journal of EMDR Practice and Research to Science Partner Journal program

Study of deadly dog cancer reveals new clues for improved treatment

Skin-penetrating nematodes have a love-hate relationship with carbon dioxide

Fewer than 1% of U.S. clinical drug trials enroll pregnant participants, study finds

A global majority trusts scientists, wants them to have greater role in policymaking, study finds

Transforming China’s food system: Healthy diets lead the way

[Press-News.org] New computational approach finds gene that drives aggressive brain cancer
Analysis also reveals new genes involved in breast cancer and Alzheimer's