PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Superconducting circuits, simplified

New circuit design could unlock the power of experimental superconducting computer chips

2014-10-17
(Press-News.org) Images/release: http://newsoffice.mit.edu/2014/cheaper-superconducting-computer-chips-1017

Computer chips with superconducting circuits — circuits with zero electrical resistance — would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption of the massive data centers that power the Internet's most popular sites.

Superconducting chips also promise greater processing power: Superconducting circuits that use so-called Josephson junctions have been clocked at 770 gigahertz, or 500 times the speed of the chip in the iPhone 6.

But Josephson-junction chips are big and hard to make; most problematic of all, they use such minute currents that the results of their computations are difficult to detect. For the most part, they've been relegated to a few custom-engineered signal-detection applications.

In the latest issue of the journal Nano Letters, MIT researchers present a new circuit design that could make simple superconducting devices much cheaper to manufacture. And while the circuits' speed probably wouldn't top that of today's chips, they could solve the problem of reading out the results of calculations performed with Josephson junctions.

The MIT researchers — Adam McCaughan, a graduate student in electrical engineering, and his advisor, professor of electrical engineering and computer science Karl Berggren — call their device the nanocryotron, after the cryotron, an experimental computing circuit developed in the 1950s by MIT professor Dudley Buck. The cryotron was briefly the object of a great deal of interest — and federal funding — as the possible basis for a new generation of computers, but it was eclipsed by the integrated circuit.

"The superconducting-electronics community has seen a lot of devices come and go, without any real-world application," McCaughan says. "But in our paper, we have already applied our device to applications that will be highly relevant to future work in superconducting computing and quantum communications."

Superconducting circuits are used in light detectors that can register the arrival of a single light particle, or photon; that's one of the applications in which the researchers tested the nanocryotron. McCaughan also wired together several of the circuits to produce a fundamental digital-arithmetic component called a half-adder.

Resistance is Futile

Superconductors have no electrical resistance, meaning that electrons can travel through them completely unimpeded. Even the best standard conductors — like the copper wires in phone lines or conventional computer chips — have some resistance; overcoming it requires operational voltages much higher than those that can induce current in a superconductor. Once electrons start moving through an ordinary conductor, they still collide occasionally with its atoms, releasing energy as heat.

Superconductors are ordinary materials cooled to extremely low temperatures, which damps the vibrations of their atoms, letting electrons zip past without collision. Berggren's lab focuses on superconducting circuits made from niobium nitride, which has the relatively high operating temperature of 16 Kelvin, or minus 257 degrees Celsius. That's achievable with liquid helium, which, in a superconducting chip, would probably circulate through a system of pipes inside an insulated housing, like Freon in a refrigerator.

A liquid-helium cooling system would of course increase the power consumption of a superconducting chip. But given that the starting point is about 1 percent of the energy required by a conventional chip, the savings could still be enormous. Moreover, superconducting computation would let data centers dispense with the cooling systems they currently use to keep their banks of servers from overheating.

Cheap superconducting circuits could also make it much more cost-effective to build single-photon detectors, an essential component of any information system that exploits the computational speedups promised by quantum computing.

Engineered to a T

The nanocryotron — or nTron — consists of a single layer of niobium nitride deposited on an insulator in a pattern that looks roughly like a capital "T." But where the base of the T joins the crossbar, it tapers to only about one-tenth its width. Electrons sailing unimpeded through the base of the T are suddenly crushed together, producing heat, which radiates out into the crossbar and destroys the niobium nitride's superconductivity.

A current applied to the base of the T can thus turn off a current flowing through the crossbar. That makes the circuit a switch, the basic component of a digital computer.

After the current in the base is turned off, the current in the crossbar will resume only after the junction cools back down. Since the superconductor is cooled by liquid helium, that doesn't take long. But the circuits are unlikely to top the 1 gigahertz typical of today's chips. Still, they could be useful for some lower-end applications where speed isn't as important as energy efficiency.

Their most promising application, however, could be in making calculations performed by Josephson junctions accessible to the outside world. Josephson junctions use tiny currents that until now have required sensitive lab equipment to detect. They're not strong enough to move data to a local memory chip, let alone to send a visual signal to a computer monitor.

In experiments, McCaughan demonstrated that currents even smaller than those found in Josephson-junction devices were adequate to switch the nTron from a conductive to a nonconductive state. And while the current in the base of the T can be small, the current passing through the crossbar could be much larger — large enough to carry information to other devices on a computer motherboard.

INFORMATION:

McCaughan and Berggren's research was funded by the National Science Foundation and by the Director of National Intelligence's Intelligence Advanced Research Projects Activity.

Written by Larry Hardesty, MIT News Office



ELSE PRESS RELEASES FROM THIS DATE:

University of Toronto study finds that action video games bolster sensorimotor skills

2014-10-17
University of Toronto study finds that action video games bolster sensorimotor skills A study led by University of Toronto psychology researchers has found that people who play action video games such as Call of Duty or Assassin's Creed seem to learn a new sensorimotor skill more quickly than non-gamers do. A new sensorimotor skill, such as learning to ride a bike or typing, often requires a new pattern of coordination between vision and motor movement. With such skills, an individual generally moves from novice performance, characterized by a low degree of coordination, ...

Sperm wars

Sperm wars
2014-10-17
This news release is available in German. Why do male animals need millions of sperms every day in order to reproduce? And why are there two sexes anyway? These and related questions are the topic of the latest issue of the research journal Molecular Human Reproduction published today (Oct. 16th, 2014). The evolutionary biologist Steven Ramm from Bielefeld University Bielefeld has compiled this special issue on sperm competition. In nature, it is not unusual for a female to copulate with several males in quick succession – chimpanzees are one good example. 'The ...

Presence of enzyme may worsen effects of spinal cord injury and impair long-term recovery

2014-10-17
Philadelphia, PA, October 16, 2014 – Traumatic spinal cord injury (SCI) is a devastating condition with few treatment options. Studies show that damage to the barrier separating blood from the spinal cord can contribute to the neurologic deficits that arise secondary to the initial trauma. Through a series of sophisticated experiments, researchers reporting in The American Journal of Pathology suggest that matrix metalloproteinase-3 (MMP-3) plays a pivotal role in disruption of the brain/spinal cord barrier (BSCB), cell death, and functional deficits after SCI. This ...

Scientists opens black box on bacterial growth in cystic fibrosis lung infection

2014-10-17
Researchers from the University of Copenhagen have shown for the first time how bacteria can grow directly in the lungs of Cystic fibrosis patients, giving them the opportunity to get tremendous insights into bacteria behavior and growth in chronic infections. The study also discovered the bacterial growth in chronic lung infections among cystic fibrosis (CF) patients was halted or slowed down by the immune cells. The researchers discovered the immune cells consumed all the oxygen and helped "suffocate" the bacteria, forcing the bacteria to switch to a much slower growth. The ...

High-speed evolution in the lab

2014-10-17
DNA analysis has become increasingly efficient and cost-effective since the human genome was first fully sequenced in the year 2001. Sequencing a complete genome, however, still costs around US$1,000. Sequencing the genetic code of hundreds of individuals would therefore be very expensive and time-consuming. In particular for non-human studies, researchers very quickly hit the limit of financial feasibility. Sequencing Groups Instead of Individuals The solution to this problem is pool sequencing (Pool-Seq). Schlötterer and his team sequence entire groups of fruit ...

Scientific breakthrough will help design the antibiotics of the future

Scientific breakthrough will help design the antibiotics of the future
2014-10-17
Scientists have used computer simulations to show how bacteria are able to destroy antibiotics – a breakthrough which will help develop drugs which can effectively tackle infections in the future. Researchers at the University of Bristol focused on the role of enzymes in the bacteria, which split the structure of the antibiotic and stop it working, making the bacteria resistant. The new findings, published in Chemical Communications, show that it's possible to test how enzymes react to certain antibiotics. It's hoped this insight will help scientists to develop ...

Physicists warning to 'nail beauty fans' applies to animals too

2014-10-17
The daily trimming of fingernails and toenails to make them more aesthetically pleasing could be detrimental and potentially lead to serious nail conditions. The research, carried out by experts in the School of Veterinary Medicine and Science at The University of Nottingham, will also improve our understanding of disease in the hooves of farm animals and horses. Dr Cyril Rauch, a physicist and applied mathematician, together with his PhD Student Mohammed Cherkaoui-Rbati, devised equations to identify the physical laws that govern nail growth, and used them to throw ...

Emergency aid for overdoses

2014-10-17
This news release is available in German. To date, antidotes exist for only a very few drugs. When treating overdoses, doctors are often limited to supportive therapy such as induced vomiting. Treatment is especially difficult if there is a combination of drugs involved. So what can be done if a child is playing and accidentally swallows his grandmother's pills? ETH professor Jean-Christophe Leroux from the Institute of Pharmaceutical Sciences at ETH Zurich wanted to find an answer to this question. "The task was to develop an agent that could eliminate many different ...

How the brain leads us to believe we have sharp vision

How the brain leads us to believe we have sharp vision
2014-10-17
Its central finding is that our nervous system uses past visual experiences to predict how blurred objects would look in sharp detail. "In our study we are dealing with the question of why we believe that we see the world uniformly detailed," says Dr. Arvid Herwig from the Neuro-Cognitive Psychology research group of the Faculty of Psychology and Sports Science. The group is also affiliated to the Cluster of Excellence Cognitive Interaction Technology (CITEC) of Bielefeld University and is led by Professor Dr. Werner X. Schneider. Only the fovea, the central area of ...

UCLA research could help improve bladder function among people with spinal cord injuries

UCLA research could help improve bladder function among people with spinal cord injuries
2014-10-17
People who have suffered spinal cord injuries are often susceptible to bladder infections, and those infections can cause kidney damage and even death. New UCLA research may go a long way toward solving the problem. A team of scientists studied 10 paralyzed rats that were trained daily for six weeks with epidural stimulation of the spinal cord and five rats that were untrained and did not receive the stimulation. They found that training and epidural stimulation enabled the rats to empty their bladders more fully and in a timelier manner. The study was published in ...

LAST 30 PRESS RELEASES:

Clinical trial at Emory University reveals twice-yearly injection to be 96% effective in HIV prevention

Discovering the traits of extinct birds

Are health care disparities tied to worse outcomes for kids with MS?

For those with CTE, family history of mental illness tied to aggression in middle age

The sound of traffic increases stress and anxiety

Global food yields have grown steadily during last six decades

Children who grow up with pets or on farms may develop allergies at lower rates because their gut microbiome develops with more anaerobic commensals, per fecal analysis in small cohort study

North American Early Paleoindians almost 13,000 years ago used the bones of canids, felids, and hares to create needles in modern-day Wyoming, potentially to make the tailored fur garments which enabl

Higher levels of democracy and lower levels of corruption are associated with more doctors, independent of healthcare spending, per cross-sectional study of 134 countries

In major materials breakthrough, UVA team solves a nearly 200-year-old challenge in polymers

Wyoming research shows early North Americans made needles from fur-bearers

Preclinical tests show mRNA-based treatments effective for blinding condition

Velcro DNA helps build nanorobotic Meccano

Oceans emit sulfur and cool the climate more than previously thought

Nanorobot hand made of DNA grabs viruses for diagnostics and blocks cell entry

Rare, mysterious brain malformations in children linked to protein misfolding, study finds

Newly designed nanomaterial shows promise as antimicrobial agent

Scientists glue two proteins together, driving cancer cells to self-destruct

Intervention improves the healthcare response to domestic violence in low- and middle-income countries

State-wide center for quantum science: Karlsruhe Institute of Technology joins IQST as a new partner

Cellular traffic congestion in chronic diseases suggests new therapeutic targets

Cervical cancer mortality among US women younger than age 25

Fossil dung reveals clues to dinosaur success story

New research points way to more reliable brain studies

‘Alzheimer’s in dish’ model shows promise for accelerating drug discovery

Ultraprocessed food intake and psoriasis

Race and ethnicity, gender, and promotion of physicians in academic medicine

Testing and masking policies and hospital-onset respiratory viral infections

A matter of life and death

Huge cost savings from more efficient use of CDK4/6 inhibitors in metastatic breast cancer reported in SONIA study

[Press-News.org] Superconducting circuits, simplified
New circuit design could unlock the power of experimental superconducting computer chips