(Press-News.org) Boston, MA – A research team led by Brigham and Women's Hospital (BWH) has developed and tested a novel nanoparticle platform that efficiently delivers clinically important proteins in vivo in initial proof-of-concept tests. Nanoparticles, which are particles measuring nanometers in size, hold promise for a range of applications, including human therapeutics. The key advantage of the new platform, known as a thermosponge nanoparticle, is that it eliminates the need for harsh solvents, which can damage the very molecules the particles are designed to carry.
The study is published online October 21 in Nano Letters.
"A central challenge in applying nanoparticle technology to protein therapeutics is preserving proteins' biological activity, which can be inactivated by the organic solvents used in nanoparticle engineering," said Omid Farokhzad, MD, Director of the BWH Laboratory of Nanomedicine and Biomaterials. "Our research demonstrates that the thermosponge platform, which enables the solvent-free loading of proteins, is a promising approach for the delivery of a variety of proteins, including highly labile proteins such as IL-10."
Protein-based therapeutics form an important class of drugs to treat a range of human diseases. However, significant challenges in their development have generally resulted in very slow development paths. To overcome these challenges, Farokhzad and his colleagues sought to create improved nanoparticle methods for delivering protein therapies.
The new thermosponge nanoparticles (TNPs) they developed are composed of biocompatible and biodegradable polymers. These polymers include a central, spherical core, made of the polymer poly(D,L-lactide), and an outer "thermosponge," made of a polaxomer polymer. The core can be either positively or negatively charged, to allow for the delivery of negatively or positively charged proteins, respectively. Importantly, the thermosponge shell can expand or contract as temperatures change, which permits the solvent-free loading of proteins onto the TNP.
The researchers selected a range of different proteins for loading onto the TNPs, including positively-charged interleukin-10 (IL-10) and erythropoietin, and negatively-charged insulin and human growth hormone. The proteins showed similar patterns of sustained release for four days after loading, indicating that the TNPs are able to effectively deliver a variety of proteins.
Further tests showed that the proteins loaded onto the TNPs retained their bioactivity throughout both loading and release from the TNPs.
Importantly, in studies of pre-clinical models, loading of IL-10 or insulin onto the TNPs resulted in dramatic increases in systemic exposure to the proteins, reduced clearance, and increased circulating half-life of the proteins compared to the native protein without TNP.
"The TNPs have been designed and nanoengineered with protein bioactivity in mind, where we optimized a solvent-free nanotechnology that can entrap proteins of various size and charges based on temperature differences into the shell of the nanoparticles. This methodology is amenable for the delivery of a range of therapeutic proteins and can potentially lead to the facile clinical translation of nanoparticles for biologics delivery," said Won IL Choi, Ph.D., a postdoctoral fellow in the BWH Laboratory of Nanomedicine and Biomaterials.
INFORMATION:
This research was supported by the Program of Excellence in Nanotechnology (PEN) Award, Contract #HHSN268201000045C, from the National Heart, Lung, and Blood Institute, National Institutes of Health (CA151884, and NIH R01 grant EB015419-01), and the David Koch-Prostate Cancer Foundation Award in Nanotherapeutics.
(Sacramento, CA): Broad-spectrum prevention that can simultaneously prevent unintended pregnancy along with STIs, including HIV, is on the horizon say experts in a special supplement of the BJOG: An International Journal of Obstetrics and Gynaecology. The issue features an international assemblage of researchers, funders, developers and advocates who identify the pressing global health rationale for MPTs and present new research and strategies for making the go/no-go funding and research decisions that shape the field.
The invited guest editor for the supplement is Dr. ...
A review of sentencing following the 2011 English riots has shown that sentences were much harsher than realised at first.
And just as people got caught up in the riots and acted out of character the study, carried out by The University of Manchester and Liverpool John Moores University, found that the courts themselves got caught up in a similar kind of collective hysteria.
Dr Hannah Quirk, a Senior Lecturer in Criminal Law and Justice from The University of Manchester, was the co-author of the research which has just been published in The British Journal of Criminology. ...
Our immune system defends us from harmful bacteria and viruses, but, if left unchecked, the cells that destroy those invaders can turn on the body itself, causing auto-immune diseases like type-1 diabetes or multiple sclerosis. A molecule called insulin-like growth factor-1 (IGF-1) boosts the body's natural defence against this 'friendly fire', scientists at the European Molecular Biology Laboratory (EMBL) in Monterotondo, Italy, have found. The findings, published today in EMBO Molecular Medicine, are especially exciting because IGF-1 is already approved for use in patients, ...
Using two world-class supercomputers, the researchers were able to demonstrate the effectiveness of their approach by simulating the formation of a massive galaxy at the dawn of cosmic time. The ALMA radio telescope – which stands at an elevation of 5,000 meters in the Atacama Desert of Chile, one of the driest places on earth – was then used to forge observations of the galaxy, showing how their method improves upon previous efforts.
It is extremely difficult to gather information about galaxies at the edge of the Universe: the signals from these heavenly ...
CHICAGO (October 22, 2014) – New research shows vulnerable patients in the Intensive Care Unit (ICU) who received enhanced oral care from a dentist were at significantly less risk for developing a lower respiratory tract infection (LRTI), like ventilator-associated pneumonia, during their stay. The study was published in the November issue of Infection Control and Hospital Epidemiology, the journal of the Society for Healthcare Epidemiology of America (SHEA).
"Bacteria causing healthcare-associated infections often start in the oral cavity," said Fernando Bellissimo-Rodrigues, ...
CHICAGO (October 22, 2014) – New research found tracking influenza vaccination of healthcare personnel through an automated system increased vaccination compliance and reduced workload burden on human resources and occupational health staff. The study is published in the November issue of Infection Control and Hospital Epidemiology, the journal of the Society for Healthcare Epidemiology of America (SHEA).
"Mandatory vaccination programs help protect vulnerable patients, but can be tremendously time and resource dependent," said Susan Huang, MD, MPH, an author of ...
Frying is one of the world's most popular ways to prepare food — think fried chicken and french fries. Even candy bars and whole turkeys have joined the list. But before dunking your favorite food in a vat of just any old oil, consider using olive. Scientists report in ACS' Journal of Agricultural and Food Chemistry that olive oil withstands the heat of the fryer or pan better than several seed oils to yield more healthful food.
Mohamed Bouaziz and colleagues note that different oils have a range of physical, chemical and nutritional properties that can degrade ...
Drawing blood and testing it is standard practice for many medical diagnostics. As a less painful alternative, scientists are developing skin patches that could one day replace the syringe. In the ACS journal Analytical Chemistry, one team reports they have designed and successfully tested, for the first time, a small skin patch that detected malaria proteins in live mice. It could someday be adapted for use in humans to diagnose other diseases, too.
Simon R. Corrie and colleagues note that while blood is rich with molecular clues that tell a story about a person's health, ...
Action-packed science-fiction movies often feature colourful laser bolts. But what would a real laser missile look like during flight, if we could only make it out? How would it illuminate its surroundings? The answers lie in a film made at the Laser Centre of the Institute of Physical Chemistry of the Polish Academy of Sciences in cooperation with the Faculty of Physics at the University of Warsaw.
Tests of a new compact high-power laser have given researchers at the Laser Centre of the Institute of Physical Chemistry of the Polish Academy of Sciences and the Faculty ...
"We're using less expensive raw materials in smaller amounts, we have fewer production steps, and have potentially lower total energy consumption," PhD candidate Fredrik Martinsen and Professor Ursula Gibson of the Department of Physics at NTNU explain.
They recently published their technique in Scientific Reports.
Their processing technique allows them to make solar cells from silicon that is 1000 times less pure, and thus less expensive, than the current industry standard.
Glass fibers with a silicon core
The researchers' solar cells are composed of silicon fibers ...