PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Berkeley Lab study reveals molecular structure of water at gold electrodes

Berkeley Lab study reveals molecular structure of water at gold electrodes
2014-10-23
(Press-News.org) When a solid material is immersed in a liquid, the liquid immediately next to its surface differs from that of the bulk liquid at the molecular level. This interfacial layer is critical to our understanding of a diverse set of phenomena from biology to materials science. When the solid surface is charged, just like an electrode in a working battery, it can drive further changes in the interfacial liquid. However, elucidating the molecular structure at the solid-liquid interface under these conditions has proven difficult.

Now, for the first time, researchers at the US Department of Energy's (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab) have observed the molecular structure of liquid water at a gold surface under different charging conditions.

Miquel Salmeron, a senior scientist in Berkeley Lab's Materials Sciences Division (MSD) and professor in UC Berkeley's Materials Science and Engineering Department, explains this in the context of a battery. "At an electrode surface, the build-up of electrical charge, driven by a potential difference (or voltage), produces a strong electric field that drives molecular rearrangements in the electrolyte next to the electrode."

Berkeley Lab researchers have developed a method not only to look at the molecules next to the electrode surface, but to determine their arrangement changes depending on the voltage.

With gold as a chemically inert electrode, and slightly-saline water as an electrolyte, Salmeron and colleagues used a new twist on x-ray absorption spectroscopy (XAS) to probe the interface and show how the interfacial molecules are arranged.

XAS itself is not new. In this process, a material absorbs x-ray photons at a specific rate as a function of photon energy. A plot of the absorption intensity as a function of energy is referred to as a spectrum which, like a fingerprint, is characteristic of a given material molecule and its chemical state. Our eyes recognize many materials by their characteristic colors, which are related to their visible light absorption spectra. The x-ray photons used in this study have energies that are about 250 times higher than those of visible light and are generated at Berkeley Lab's Advanced Light Source (ALS).

Typical XAS measurements are made under vacuum conditions, as x-rays are readily absorbed by matter, even the nitrogen molecules in air. But liquids will quickly evaporate in a vacuum. By using a very thin (100 nm, or a tenth of a micrometer) x-ray transparent window, with a thin coating of gold (20nm), on a sealed liquid sample holder, the Berkeley Lab team was able to expose water molecules in the liquid to x-rays and collect their spectra.

Upon absorbing an x-ray photon, the excited water molecule can spew (emit) either charged particles (electrons) or light (photons). The amount of photon emission, or fluorescence, is one indicator of how many x-ray photons have been absorbed. However, fluorescing x-rays can be detected from molecules ranging from those at the gold surface to those deep (micrometers) inside the liquid far from the influence of the gold surface, and these dominate the measured spectrum.

"We are only really interested in a nanoscale interfacial region, and looking at the fluorescence photon signal we can't tell the difference between the interface and the interior electrolyte molecules," says Salmeron.

The challenge therefore was to collect a signal that would be dominated by the interfacial region. The team accomplished this by measuring electron emissions because electrons emitted from x-ray excited water molecules travel only nanometer distances through matter. The electrons arriving at the gold electrode surface can be detected as an electrical current traveling through a wire attached to it. This avoids confusion with signals from the interior electrolyte because electrons emitted from interior molecules don't travel far enough to be detected.

There's an additional problem that arises when studying liquids in contact with working electrodes because they carry a steady current as in batteries and other electrochemical systems. While the emitted electrons from nearby molecules are indeed detectable, this contribution to the current is dwarfed by the normal "Faradaic" current of the battery at finite voltages. When measuring current off the electrode, it is critical to determine which part is due to the x-rays and which is due to the regular battery current.

To overcome this problem, the researchers pulsed the incoming x-rays from the synchrotron at a known frequency. The current contribution resulting from electron emission by interfacial molecules is thus pulsed as well, and instruments can separate this nanoampere modulated current from the main Faradaic current.

These experiments result in absorption vs. x-ray energy curves (spectra) that reflect how water molecules within nanometers of the gold surface absorb the x-rays. To translate that information into molecular structure, a sophisticated theoretical analysis technique is needed.

David Prendergast, a staff scientist in the Molecular Foundry and researcher in the Joint Center for Energy Storage Research (JCESR), has developed computational techniques that allow his team to accomplish this translation.

Using supercomputer facilities at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), he conducted large molecular dynamics simulations of the gold-water interface and then predicted the x-ray absorption spectra of representative structures from those simulations.

"These are first-principles calculations," explains Prendergast. "We don't dictate the chemistry: we just choose what atomic elements are present and how many atoms. That's it. The chemistry is a result of the calculation."

It turns out that for a neutral gold surface, a significant number of water molecules (H2O) next to the gold surface orient with hydrogen (H) atoms pointing toward the gold. Water molecules are bound together by so-called hydrogen bonds, which orient the slightly positively-charged H atoms in each molecule towards the slightly negatively-charged oxygen (O) atoms of neighboring molecules. This network of hydrogen bonds is what holds water molecules together to make a liquid under conditions of temperature and pressure that we consider comfortable as humans. It is perhaps surprising that the inert gold surface can induce significant numbers of water molecules not to hydrogen-bond to each other but to bond to the gold instead. This number is enhanced when the gold is negatively charged and therefore attracting the more positive H atoms. Furthermore, positively-charged gold ions cause water molecules to orient their H atoms away from the gold, which strengthens the hydrogen bond network of the interfacial liquid.

"That's the main thing we know about the gold electrode surface from the x-ray absorption spectra: how many water molecules are tilted one way or another, and if their hydrogen bonds are broken or not," concludes Salmeron. "Water next to the electrode has a different molecular structure than it would in the absence of the electrode."

There are a couple of subtle things that are very important, notes Prendergast. First, the shape of the absorption spectra changes as a function of changing voltage. Since the measured spectra agree with the calculations one can draw conclusions about the molecular structure of the liquid interface as a function of voltage. The second is that in the calculations, the change in the structure of water is limited to the first two molecular layers above the surface and these two layers span only about 1 nanometer. To observe any difference in the experimental spectra with varying voltage means that measurements are sensitive to a shorter length scale than was thought possible.

"We had thought the sensitivity to be tens of nanometers, but it turns out to be subnanometer," says Prendergast. "That's spectacular!"

This study, which is reported in Science in a paper titled "The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy," marks the first time that the scientific community has shown such high sensitivity in an in-situ environment under working electrode conditions.

INFORMATION:

The complete list of authors on the paper include Juan-Jesus Velasco-Velez, Chenghao Wu, Tod A. Pascal, Liwen F. Wan, Jinghua Guo, David Prendergast, and Miquel Salmeron.

This research was primarily supported by the DOE Office of Science. The ALS, the Molecular Foundry and NERSC are all DOE Office of Science User Facilities. JCESR is an Energy Innovation Hub funded by DOE's Office of Science.


[Attachments] See images for this press release:
Berkeley Lab study reveals molecular structure of water at gold electrodes Berkeley Lab study reveals molecular structure of water at gold electrodes 2

ELSE PRESS RELEASES FROM THIS DATE:

How ferns adapted to one of Earth's newest and most extreme environments

2014-10-23
Ferns are believed to be 'old' plant species – some of them lived alongside the dinosaurs, over 200 million years ago. However, a group of Andean ferns evolved much more recently: their completely new form and structure (morphology) arose and diversified within the last 2 million years. This novel morphology seems to have been advantageous when colonising the extreme environment of the high Andes. Dr Patricia Sanchez-Baracaldo (Bristol) and Dr Gavin Thomas (Sheffield) used molecular and morphological data to study a group of ferns which grow in a unique ecosystem ...

Bristol team creates designer 'barrel' proteins

Bristol team creates designer barrel proteins
2014-10-23
Proteins are long linear molecules that fold up to form well-defined 3D shapes. These 3D molecular architectures are essential for biological functions such as the elasticity of skin, the digestion of food, and the transport of oxygen in blood. Despite the wide variety of tasks that natural proteins perform, they appear to use only a limited number of structural types, perhaps just a few thousand or so. These are used over and over again, being altered and embellished through evolution to generate many different functions. This raises the question: are more protein ...

Dartmouth study measures breast cancer tumor response to neoadjuvant chemotherapy

2014-10-23
A Dartmouth study suggests that it may be possible to use Diffuse Optical Spectroscopic Tomographic imaging (DOST) to predict which patients will best respond to chemotherapy used to shrink breast cancer tumors before surgery. These findings could eliminate delays in effective early treatment for tumors unlikely to respond to neoadjuvant chemotherapy (NAC). The study, "Predicting breast tumor response to neoadjuvant chemotherapy with Diffuse Optical Spectroscopic Tomography prior to treatment," was published online in Clinical Cancer Research on October 7, 2014. Breast ...

Synthetic biology on ordinary paper, results off the page

2014-10-23
BOSTON - New achievements in synthetic biology announced today by researchers at the Wyss Institute for Biologically Inspired Engineering, which will allow complex cellular recognition reactions to proceed outside of living cells, will dare scientists to dream big: there could one day be inexpensive, shippable and accurate test kits that use saliva or a drop of blood to identify specific disease or infection — a feat that could be accomplished anywhere in the world, within minutes and without laboratory support, just by using a pocket–sized paper diagnostic ...

Desert streams: Deceptively simple

Desert streams: Deceptively simple
2014-10-23
(Santa Barbara, Calif.) — Volatile rainstorms drive complex landscape changes in deserts, particularly in dryland channels, which are shaped by flash flooding. Paradoxically, such desert streams have surprisingly simple topography with smooth, straight and symmetrical form that until now has defied explanation. That paradox has been resolved in newly published research conducted by Michael Singer and Katerina Michaelides, associate researchers at UC Santa Barbara's Earth Research Institute. The pair show that simple topography in dryland channels is maintained ...

UT Southwestern scientists discover new clues to how weight loss is regulated

UT Southwestern scientists discover new clues to how weight loss is regulated
2014-10-23
DALLAS – Oct. 23, 2014 – A hormone seen as a popular target to develop weight-loss drugs works by directly targeting the brain and triggering previously unknown activity in the nervous system, UT Southwestern Medical Center obesity researchers have found. The fibroblast growth factor 21 (FGF21) hormone has been a key target for developing weight-loss drugs because the protein increases energy expenditure, causing the body to burn calories. But how the hormone worked wasn't known until now. UT Southwestern researchers tracking the hormone discovered that ...

European multicenter harmonization study shows anaplastic lymphoma kinase immunohistochemistry testing comparable to, if not better than, fluorescence in situ hybridization testing

2014-10-23
DENVER – Sixteen institutions across Europe collaborated together to show for the first time that a semi-quantitative anaplastic lymphoma kinase (ALK) protein expression test, immunohistochemistry (IHC), is reliable amongst several laboratories and reviewers when test methodology and result interpretation are strictly standardized and the scoring pathologists are appropriately trained on the test. ALK tyrosine kinase inhibitors (TKIs) shrink tumors and increase progression-free survival in late-stage non-small cell lung cancer (NSCLC) patients positive for ALK as ...

Novel software application can stratify early-stage non-small cell lung cancer patients

2014-10-23
DENVER –CANARY, Computer-Aided Nodule Assessment and Risk Yield, is a novel software tool developed at Mayo Clinic that can automatically quantitate adenocarcinoma pulmonary nodule characteristics from non-invasive high resolution computed tomography (HRCT) images and stratify non-small cell lung cancer (NSCLC) patients into risk groups that have significantly different disease-free survival outcomes. The majority of NSCLC patients are diagnosed with advanced-stage disease which is concomitant with an exceptionally poor prognosis, 5-year survival rate of 4%. In ...

Gene that once aided survival in the Arctic found to have negative impact on health today

2014-10-23
In individuals living in the Arctic, researchers have discovered a genetic variant that arose thousands of years ago and most likely provided an evolutionary advantage for processing high-fat diets or for surviving in a cold environment; however, the variant also seems to increase the risk of hypoglycemia, or low blood sugar, and infant mortality in today's northern populations. The findings, published online October 23 in Cell Press's American Journal of Human Genetics, provide an example of how an initially beneficial genetic change could be detrimental to future generations. ...

Genomic data support early contact between Easter Island and Americas

Genomic data support early contact between Easter Island and Americas
2014-10-23
People may have been making their way from Easter Island to the Americas well before the Dutch commander Jakob Roggeveen arrived with his ships in 1722, according to new genomic evidence showing that the Rapanui people living on that most isolated of islands had significant contact with Native American populations hundreds of years earlier. The findings reported in the Cell Press journal Current Biology on October 23 lend the first genetic support for such an early trans-Pacific route between Polynesia and the Americas, an impressive trek of more than 4,000 kilometers (nearly ...

LAST 30 PRESS RELEASES:

Reality check: making indoor smartphone-based augmented reality work

Overthinking what you said? It’s your ‘lizard brain’ talking to newer, advanced parts of your brain

Black men — including transit workers — are targets for aggression on public transportation, study shows

Troubling spike in severe pregnancy-related complications for all ages in Illinois

Alcohol use identified by UTHealth Houston researchers as most common predictor of escalated cannabis vaping among youths in Texas

Need a landing pad for helicopter parenting? Frame tasks as learning

New MUSC Hollings Cancer Center research shows how Golgi stress affects T-cells' tumor-fighting ability

#16to365: New resources for year-round activism to end gender-based violence and strengthen bodily autonomy for all

Earliest fish-trapping facility in Central America discovered in Maya lowlands

São Paulo to host School on Disordered Systems

New insights into sleep uncover key mechanisms related to cognitive function

USC announces strategic collaboration with Autobahn Labs to accelerate drug discovery

Detroit health professionals urge the community to act and address the dangers of antimicrobial resistance

3D-printing advance mitigates three defects simultaneously for failure-free metal parts 

Ancient hot water on Mars points to habitable past: Curtin study

In Patagonia, more snow could protect glaciers from melt — but only if we curb greenhouse gas emissions soon

Simplicity is key to understanding and achieving goals

Caste differentiation in ants

Nutrition that aligns with guidelines during pregnancy may be associated with better infant growth outcomes, NIH study finds

New technology points to unexpected uses for snoRNA

Racial and ethnic variation in survival in early-onset colorectal cancer

Disparities by race and urbanicity in online health care facility reviews

Exploring factors affecting workers' acquisition of exercise habits using machine learning approaches

Nano-patterned copper oxide sensor for ultra-low hydrogen detection

Maintaining bridge safer; Digital sensing-based monitoring system

A novel approach for the composition design of high-entropy fluorite oxides with low thermal conductivity

A groundbreaking new approach to treating chronic abdominal pain

ECOG-ACRIN appoints seven researchers to scientific committee leadership positions

New model of neuronal circuit provides insight on eye movement

Cooking up a breakthrough: Penn engineers refine lipid nanoparticles for better mRNA therapies

[Press-News.org] Berkeley Lab study reveals molecular structure of water at gold electrodes