(Press-News.org) A disappearing act was the last thing Rice University physicist Randy Hulet expected to see in his ultracold atomic experiments, but that is what he and his students produced by colliding pairs of Bose Einstein condensates (BECs) that were prepared in special states called solitons.
Hulet's team documented the strange phenomenon in a new study published online this week in the journal Nature Physics.
BECs are clumps of a few hundred thousand lithium atoms that are cooled to within one-millionth of a degree above absolute zero, a temperature so cold that the atoms march in lockstep and act as a single "matter wave." Solitons are waves that do not diminish, flatten out or change shape as they move through space. To form solitons, Hulet's team coaxed the BECs into a configuration where the attractive forces between lithium atoms perfectly balance the quantum pressure that tends to spread them out..
The researchers expected to observe the property that a pair of colliding solitons would pass though one another without slowing down or changing shape. However, they found that in certain collisions, the solitons approached one another, maintained a minimum gap between themselves, and then appeared to bounce away from the collision.
"You never see them together," said Hulet, Rice's Fayez Sarofim Professor of Physics and Astronomy. "There is always a hole, a gap that they must jump over. They pass through one another, but they never occupy the same space while they're doing that.
"It happens because of 'wave packet' interference," he said. "Think of them as waves that can have a positive or negative amplitude. One of the solitons is positive and the other is negative, so they cancel one another. The probability of them being in the spot where they meet is zero. They pass through that spot, but you never see them there."
Hulet's team specializes in experiments on BECs and other ultracold matter. They use lasers to both trap and cool clouds of lithium gas to temperatures that are so cold that the matter's behavior is dictated by fundamental forces of nature that aren't observable at higher temperatures.
To create solitons, Hulet and postdoctoral research associate Jason Nguyen, the study's lead author, balanced the forces of attraction and repulsion in the BECs.
"First we make a Bose Einstein condensate and then we use a sheet of light to split the condensate in half and push the two halves apart," Nguyen said. "We hold them apart and turn each of them into solitons, and then we take the sheet away and let them fall back toward one another and collide."
Cameras captured images of the tiny BECs throughout the process. In the images, two solitons oscillate back and forth like pendulums swinging in opposite directions. Hulet's team, which also included graduate student De Luo and former postdoctoral researcher Paul Dyke, documented thousands of head-on collisions between soliton pairs and noticed a strange gap in some, but not all, of the experiments.
"One of the defining features of a soliton is that they are supposed to be able to pass through one another and emerge unfazed," Hulet said.
"Some of the collisions are consistent with that," he said, pointing to images of two solitons oscillating, meeting, emerging and continuing on their cycle. "These two solitons certainly appear to have passed through one another.
"In another set of collisions, there's always this gap between them," he said, pointing to a different set of images. "It doesn't look like they ever close that gap to be able to pass through. In fact, it looks like they've come together and then bounced off one another."
Hulet said the idea of solitons bouncing away from one another had been around for about 40 years, based on longstanding observations of optical solitons in fiber-optic cables. In this scenario, the gap is viewed as evidence of a force that is pushing the solitons apart.
To probe more deeply, Hulet's team needed to conduct a new set of experiments that focused on the one defining feature of a soliton that they couldn't control -- its phase.
The first soliton was observed in a canal in Scotland in 1834 and they've since been observed in magnets, fiber-optic cables, atomic nuclei and even swimming pools. Hulet's team was among the first to report BEC "matter-wave bright solitons" in 2002.
Like a wave in the ocean or a light beam in a fiber-optic cable, solitons have a characteristic amplitude, frequency and phase. Hulet's team could control the amplitude but they could not control the soliton's phase.
"All waves oscillate in time," Hulet said. "They have a frequency at which their amplitude becomes positive, negative, positive, negative and so on. The rate of that oscillation, how often it switches, defines their frequency. Where they begin that cycle is something we refer to as 'the phase.' It's a kind of starting point."
The wave's phase is an angle that can vary between zero and 360 degrees. Waves that are "in-phase" have the same starting point, and waves that are "out-of-phase" are 180 degrees off, meaning that one begins at its peak while the other starts at its trough.
"When we saw the initial data we said, 'This doesn't make sense, because solitons are always supposed to pass through one another and these look like they're bouncing instead,'" Hulet said. "So we began thinking about how we could tag one of the solitons to make it distinct so that we could follow its trajectory in time and see what it did."
The team found a way to "tag" one soliton by making it larger than the other. In the next round of experiments, Nguyen and Luo captured pictures of collisions between different-sized solitons.
"We did that experiment over and over for many different relative phases, and we looked for two cases, one where the relative phase was zero, or in-phase, and another where it was 180 degrees, or completely out-of-phase," Hulet said.
For the in-phase case, the team saw the two solitons pass through one another and emerge, just as predicted by theory.
"In the out-of-phase case, the one with the gap, where it appeared that they had been bouncing off of each other, we still saw the gap but we also saw the larger soliton emerge unfazed on the other side of the gap. In other words, it jumped through the gap!"
Hulet said the experiment confirmed the theory that solitons do pass through one another, even in cases where they are out-of-phase and only appear to bounce away from each other.
Many of the events that Hulet's team measures occur in one-thousandth of a second or less. To confirm that the "disappearing act" wasn't causing a miniscule interaction between the soliton pairs -- an interaction that might cause them to slowly dissipate over time -- Hulet's team tracked one of the experiments for almost a full second.
The data showed the solitons oscillating back and fourth, winking in and out of view each time they crossed, without any measurable effect.
"This is great example of a case where experiments on ultracold matter can yield a fundamental new insight," Hulet said. "The phase-dependent effects had been seen in optical experiments, but there has been a misunderstanding about the interpretation of those observations."
INFORMATION:In addition to the Rice researchers, theorist Boris Malomed of Tel Aviv University was a co-author of the paper, and Dyke is now with Swinburne University of Technology in Melbourne, Australia.
VIDEO is available at:
http://youtu.be/iAJ7XvKzte8
High-resolution IMAGES are available for download at:
http://news.rice.edu/wp-content/uploads/2014/09/0916_SOLITON-group-lg.jpg
CAPTION: Physicists (from left) De Luo, Jason Nguyen and Randy Hulet observed a strange disappearing act during collisions between forms of Bose Einstein condensates called solitons. In some cases, the colliding clumps of matter appear to keep their distance even as they pass through each other.
CREDIT: Jeff Fitlow/Rice University
http://news.rice.edu/wp-content/uploads/2014/09/0916_SOLITON-Hulet-lg.jpg
CAPTION: Randy Hulet
CREDIT: Jeff Fitlow/Rice University
A copy of the Nature Physics paper is available at:
http://dx.doi.org/10.1038/nphys3135
This release can be found online at news.rice.edu.
Follow Rice News and Media Relations via Twitter @RiceUNews
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.
Ultracold disappearing act
'Matter waves' move through one another but never share space
2014-11-02
ELSE PRESS RELEASES FROM THIS DATE:
New technique efficiently turns antibodies into highly tuned 'nanobodies'
2014-11-02
Antibodies, in charge of recognizing and homing in on molecular targets, are among the most useful tools in biology and medicine. Nanobodies – antibodies' tiny cousins – can do the same tasks, for example marking molecules for research or flagging diseased cells for destruction. But, thanks to their comparative simplicity nanobodies offer the tantalizing prospect of being much easier to produce.
Unfortunately, their promise hasn't been fully realized, because scientists have lacked an efficient way of identifying the nanobodies most closely tuned to their ...
'Invisible tattoos' could improve body confidence after breast cancer radiotherapy
2014-11-02
Invisible tattoos could replace the permanent dark ink tattoos used to ensure that breast cancer patients having radiotherapy are treated in exactly the same spot during each session, according to results from a pilot study to be presented at the National Cancer Research Institute (NCRI) Cancer Conference today (Sunday)*.
Research suggests that the permanent pin prick marks made on the skin of women having radiotherapy reminds them of their diagnosis for years to come, reducing body confidence and self-esteem.
It's also more difficult to spot these tattoos in dark-skinned ...
Step towards blood test for many cancer types
2014-11-02
Scientists have identified more than 800 markers in the blood of cancer patients that could help lead to a single blood test for early detection of many types of cancer in future, according to research presented at the National Cancer Research Institute (NCRI) Cancer Conference in Liverpool today (Sunday).
This is the first time that cancer-specific blood markers have been comprehensively reviewed and identified for further clinical development. This study, by the UK Early Cancer Detection Consortium*, funded by Cancer Research UK, has analysed 19,000 scientific papers ...
JNS: Pediatrics publishes guidelines for the treatment of pediatric hydrocephalus
2014-11-01
Charlottesville, VA (November 1, 2014). The Journal of Neurosurgery Publishing Group is pleased to announce today's publication of "Pediatric hydrocephalus: systematic literature review and evidence-based guidelines," a supplement to the November issue of the Journal of Neurosurgery: Pediatrics. Authored by a volunteer task force from the pediatric neurosurgery community, the supplement offers a thorough evaluation of the current treatments for pediatric hydrocephalus as well as up-to-date evidence-based recommendations for their use.
Hydrocephalus is a condition in which ...
More penalties on the way for hospitals that treat the poor? New U-M study suggests so
2014-11-01
ANN ARBOR, Mich. – Last week, the federal government revealed that it will fine more than 2,600 hospitals in the coming year, because too many Medicare patients treated at these hospitals are ending up back in the hospital within 30 days of going home. Two new conditions have been added in this round of penalties: elective hip and knee replacement and chronic lung disease.
Now, a new University of Michigan analysis shows that penalties for chronic lung disease will have a greater impact on hospitals that care for poor and minority patients. The findings are published ...
Cancer cell fingerprints in the blood may speed up childhood cancer diagnosis
2014-11-01
Newly-identified cancer cell fingerprints in the blood could one day help doctors diagnose a range of children's cancers faster and more accurately, according to research* presented at the National Cancer Research Institute (NCRI) Cancer Conference next week.
The researchers, from the University of Cambridge and Addenbrooke's Hospital in Cambridge, found unique molecular fingerprints for 11 types of children's tumours,** which could be used to develop blood tests to diagnose these cancers.
This may eventually lead to a quicker, more accurate way to diagnose tumours, ...
Study of Chile earthquake finds new rock structure that affects earthquake rupture
2014-11-01
Researchers from the University of Liverpool have found an unusual mass of rock deep in the active fault line beneath Chile which influenced the rupture size of a massive earthquake that struck the region in 2010.
The geological structure, which was not previously known about, is unusually dense and large for this depth in the Earth's crust. The body was revealed using 3-D seismic images of Earth's interior based on the monitoring of vibrations on the Pacific seafloor caused by aftershocks from the magnitude 8.8 Chile earthquake. This imaging works in a similar way to ...
Breaking down DNA by genome
2014-10-31
New DNA sequencing technologies have greatly advanced genomic and metagenomic studies in plant biology. Scientists can readily obtain extensive genetic information for any plant species of interest, at a relatively low cost, rapidly accelerating the pace of genome sequencing.
However, since plant tissues harbor three separate genomes (nuclear, chloroplast, and mitochondrial), it can often be challenging to isolate the particular genome of interest from extracted DNA samples. Sequencing DNA containing all three genomes therefore results in a considerable amount of wasted ...
Goodbye to rainy days for US, Japan's first rain radar in space
2014-10-31
After 17 years of groundbreaking 3-D images of rain and storms, the joint NASA and Japan Aerospace Exploration Agency Tropical Rainfall Measuring Mission (TRMM) will come to an end next year. NASA predicts that science operations will cease in or about April 2015, based on the most recent analysis by mission operations at NASA's Goddard Space Flight Center, Greenbelt, Maryland.
On July 8, 2014, pressure readings from the fuel tank indicated that TRMM was near the end of its fuel supply. As a result, NASA ceased station-keeping maneuvers that would keep the satellite at ...
Tracking a gigantic sunspot across the Sun
2014-10-31
An active region on the sun – an area of intense and complex magnetic fields – rotated into view on Oct. 18, 2014. Labeled AR 12192, it soon grew into the largest such region in 24 years, and fired off 10 sizable solar flares as it traversed across the face of the sun. The region was so large it could be seen without a telescope for those looking at the sun with eclipse glasses, as many did during a partial eclipse of the sun on Oct. 23.
"Despite all the flares, this region did not produce any significant coronal mass ejections," said Alex Young a solar scientist ...
LAST 30 PRESS RELEASES:
New register opens to crown Champion Trees across the U.S.
A unified approach to health data exchange
New superconductor with hallmark of unconventional superconductivity discovered
Global HIV study finds that cardiovascular risk models underestimate for key populations
New study offers insights into how populations conform or go against the crowd
Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials
WashU researchers map individual brain dynamics
Technology for oxidizing atmospheric methane won’t help the climate
US Department of Energy announces Early Career Research Program for FY 2025
PECASE winners: 3 UVA engineering professors receive presidential early career awards
‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions
MSU researcher’s breakthrough model sheds light on solar storms and space weather
Nebraska psychology professor recognized with Presidential Early Career Award
New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration
Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins
From lab to field: CABBI pipeline delivers oil-rich sorghum
Stem cell therapy jumpstarts brain recovery after stroke
Polymer editing can upcycle waste into higher-performance plastics
Research on past hurricanes aims to reduce future risk
UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology
Panorama of our nearest galactic neighbor unveils hundreds of millions of stars
A chain reaction: HIV vaccines can lead to antibodies against antibodies
Bacteria in polymers form cables that grow into living gels
Rotavirus protein NSP4 manipulates gastrointestinal disease severity
‘Ding-dong:’ A study finds specific neurons with an immune doorbell
A major advance in biology combines DNA and RNA and could revolutionize cancer treatments
Neutrophil elastase as a predictor of delivery in pregnant women with preterm labor
NIH to lead implementation of National Plan to End Parkinson’s Act
Growth of private equity and hospital consolidation in primary care and price implications
Online advertising of compounded glucagon-like peptide-1 receptor agonists
[Press-News.org] Ultracold disappearing act'Matter waves' move through one another but never share space