Rapid response for inflammation control in songbirds' brains could lead to therapies in humans
2014-11-17
(Press-News.org) A biological process in the brains of zebra finches shows that the songbirds respond quickly to trauma and are capable of controlling the natural inflammation that occurs to protect the brain from injury.
Understanding the process well enough could lead to therapies in humans to control inflammation and hasten recovery from brain injury such as stroke, said American University Prof. Colin Saldanha, who presented new research findings during the annual meeting of the Society for Neuroscience. Through experiments, Saldanha and his colleagues' found that estrogen-producing glial cells play a role in the rapid response.
"The most surprising thing to me is that the inflammation control is happening within hours, and that estrogen is made in the brain around an injury site in response to an injury," Saldanha said. "These animals have evolved a mechanism to protect their brains from injury very quickly."
Preserving Brain Function
Inflammation is a normal part of the body's immune response. It affects the brain differently compared with other parts of the body. In the brain, too much inflammation can cause degenerative effects, or in the worst case scenario, death. Chronic inflammation causes cell damage and the loss of important neurons that regulate memory, mood and movement. Being able to control and limit inflammation in an injured brain may preserve vital brain function.
As a neurobiologist and member of AU's Center for Behavioral Neuroscience, Saldanha studies estrogen in songbirds. The birds produce the common sex steroid in their brains, as do humans and other mammals. It's been known that hormones affect the brain since the 1850s, but realizing that similar hormones could be made in the brain itself, took until the 1980s. The animals make good research subjects for neuroscience for many reasons, including because of their brain plasticity.
Previous work by Saldanha and his colleagues explored how hormones communicate with neurons. They discovered a new method of communication, synaptocrine signaling, by which neurons create and feed high levels of estrogen to one another. That's when they also discovered which cells were synthesizing estrogen under conditions of brain injury: the glial cells, which are important, non-neuronal cells that live in the brain.
For more than a decade, National Institutes of Health has funded Saldanha's research because of the implications it has for treating neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, strokes and inflammatory diseases.
Controlling Inflammation
The release of estrogen in the brain to control inflammation is a natural process. It happens within about 24 hours in songbirds. The same process occurs in mammals over several days - perhaps far too late to stop brain degeneration or an end to life.
In the current experiments, Saldanha discovered another important function of glial cells -- that they activated the rapid response to protect the birds' brains. However more needed to be understood about how the protective process was keeping inflammation in check.
The researchers conducted three experiments using a type of acute injury, similar to a stroke. The injury spurred the secretion of small proteins called cytokines, which trigger an inflammatory response.
At certain points during the response, Saldanha and his colleagues controlled the levels of estrogen by preventing aromatase - the key protein needed for estrogen production - from working.
In the first experiment, researchers injured both sides of the brain, but flooded only one side with estrogen. The side flooded with estrogen showed less inflammation.
In a second experiment, researchers injured both sides of the songbird brain and limited aromatase function to only one side of the brain. On the side without aromatase, the inflammatory cytokines remained dangerously elevated. That's when researchers knew estrogen controls inflammation and its very production occurs in response to injury.
Estrogen is a complex chemical, which makes it exciting to study, Saldanha said.
"We can't just pump people full of estrogen. It can have very bad effects on systems other than the brain," Saldanha said. "It's very tricky, which is why exploring this is so important, so we can figure out how to harness its power without any deleterious side-effects."
INFORMATION:
American University is a leader in global education, enrolling a diverse student body from throughout the United States and nearly 140 countries. Located in Washington, D.C., the university provides opportunities for academic excellence, public service, and internships in the nation's capital and around the world. AU's Center for Behavioral Neuroscience brings together psychologists, biologists, chemists, and other scientists who seek to understand the relationship between nervous system behavior and disease.
ELSE PRESS RELEASES FROM THIS DATE:
2014-11-17
The adage 'you are what you eat' has been around for years. Now, important new research provides another reason to be careful with your calories.
Neuroscientists at NYU Langone Medical Center have shown that calorie-reduced diets stop the normal rise and fall in activity levels of close to 900 different genes linked to aging and memory formation in the brain.
In a presentation prepared for the Society for Neuroscience annual meeting in Washington, D.C., on Nov. 17, researchers say their experimental results, conducted in female mice, suggest how diets with fewer calories ...
2014-11-17
CHICAGO - Routine heart imaging screenings for people with diabetes at high risk to experience a cardiac event, but who have no symptoms of heart disease, does not help them avoid heart attacks, hospitalization for unstable angina or cardiac death, according to a major new study.
Instead, high-quality diabetes care is still the most effective way for diabetics to avoid heart attacks, according to the study by researchers at the Intermountain Medical Center Heart Institute in Murray, Utah.
Researchers will present their findings from the study at the 2014 American ...
2014-11-17
In contrast to previous assumptions, conservation schemes that focus only on forests may thus fail to significantly reduce CO2 emissions from land-use change. If ecosystem protection policies aim at climate protection, they need to cover the whole range of land types, according to comprehensive computer simulations. To compensate for such restrictions on land use, intensification of agriculture to generate higher yields is important.
"While protecting forests to abate climate change is definitely worthwhile, our results illustrate for the first time that forest protection ...
2014-11-17
BOSTON - Since the discovery that microRNAs play key roles in regulating human disease, the hope has been that these short non-coding RNA molecules could be translated into a therapeutic strategy for the treatment of cancer. But this promising application has been significantly hampered by a number of physiological and cellular barriers that prevent microRNA-based therapies from actually reaching tumor cells.
Now scientists have identified a novel delivery platform by which an antisense molecule - akin to the mirror image of the microRNA - can be used to exploit a unique ...
2014-11-17
Small pieces of synthetic RNA trigger a RNA interference (RNAi) response that holds great therapeutic potential to treat a number of diseases, especially cancer and pandemic viruses. The problem is delivery -- it is extremely difficult to get RNAi drugs inside the cells in which they are needed. To overcome this hurdle, researchers at University of California, San Diego School of Medicine have developed a way to chemically disguise RNAi drugs so that they are able to enter cells. Once inside, cellular machinery converts these disguised drug precursors -- called siRNNs -- ...
2014-11-17
Northwestern Medicine scientists have discovered a new potential drug therapy for a rare, incurable pediatric brain tumor by targeting a genetic mutation found in children with the cancer.
By inhibiting the tumor-forming consequences of the mutation using an experimental drug called GSKJ4, they delayed tumor growth and prolonged survival in mice with pediatric brainstem glioma.
Also known as diffuse intrinsic pontine glioma (DIPG), the disease occurs when tumors form in the brainstem, which controls essential body functions such as breathing, heartbeat and motor and ...
2014-11-17
BOSTON - A research team led by Brigham and Women's Hospital (BWH) and Dana-Farber Cancer Institute (DFCI) has uncovered surprising new findings that underscore the role of an important signaling pathway, already known to be critical in cancer, in the development of type 2 diabetes. Their results, published in the November 17, 2014 advance online issue of the journal Nature, shed additional light on how a longstanding class of diabetes drugs, known as thiazolidinediones (TZDs), work to improve glucose metabolism and suggest that inhibitors of the signaling pathway -- known ...
2014-11-17
PROVIDENCE, R.I. [Brown University] -- Ample evidence of ancient rivers, streams, and lakes make it clear that Mars was at some point warm enough for liquid water to flow on its surface. While that may conjure up images of a tropical Martian paradise, new research published today in Nature Geoscience throws a bit of cold water on that notion.
The study, by scientists from Brown University and Israel's Weizmann Institute of Science, suggests that warmth and water flow on ancient Mars were probably episodic, related to brief periods of volcanic activity that spewed tons ...
2014-11-17
A team of New York University and University of Barcelona physicists has developed a method to control the movements occurring within magnetic materials, which are used to store and carry information. The breakthrough could simultaneously bolster information processing while reducing the energy necessary to do so.
Their method, reported in the most recent issue of the journal Nature Nanotechnology, manipulates "spin waves," which are waves that move in magnetic materials. Physically, these spin waves are much like water waves--like those that propagate on the surface ...
2014-11-17
In what is likely to be a major step forward in the study of influenza, cystic fibrosis and other human diseases, an international research effort has a draft sequence of the ferret genome. The sequence was then used to analyze how the flu and cystic fibrosis affect respiratory tissues at the cellular level.
The National Institute of Allergy and infectious Diseases, of the National Institutes of Health, funded the project that was coordinated by Michael Katze and Xinxia Peng at the University of Washington in Seattle and Federica Di Palma and Jessica Alfoldi at the Broad ...
LAST 30 PRESS RELEASES:
[Press-News.org] Rapid response for inflammation control in songbirds' brains could lead to therapies in humans