PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Salk scientists unveil powerful method to speed cancer drug discovery

Salk scientists unveil powerful method to speed cancer drug discovery
2014-11-20
(Press-News.org) VIDEO: Researchers at the Salk Institute explain how a new technology, called ReBiL, can spot protein interactions more accurately, providing a new tool for cancer and other drug diagnostics.
Click here for more information.

LA JOLLA--For decades, researchers have struggled to translate basic scientific discoveries about cancer into therapeutics that effectively--and with minimal side effects--shrink a tumor.

One avenue that may hold great potential is the development of drugs that interfere with interactions between proteins, which are often disrupted during the formation and spread of cancer. Deciphering these interactions, however, has proven difficult and time consuming, leading to doubts about the practicality of this approach as a route to new therapies.

Now, Salk scientists have developed a highly sensitive, new method that enables them to detect fleeting protein interactions that play critical roles in the development of many diseases including cancer. The approach, published November 20 in Cell Reports, could dramatically accelerate the identification of many potential new drug targets and provide an immediate platform to screen for badly needed new drug candidates that disrupt abnormal protein interactions.

"The number of protein functions that are currently targeted by drugs is incredibly small compared to the total number of protein interactions that could be targeted for therapeutic benefit," says Geoffrey Wahl, a professor in Salk's Gene Expression Laboratory. "If we can crack the nut of screening for drugs that disrupt cancer-relevant protein interactions, this will be an enormous breakthrough and could have implications for many other fields as well."

Yao-Cheng Li, a staff scientist in Wahl's lab and first author of the new paper, explains that their method focuses on one of the two kinds of protein-protein interactions. "One type generates very stable protein complexes that remain together," he says. "But many other proteins display a touch-and-go kind of interaction--they bind, then fall apart. It's these latter interactions that have been the most difficult to detect."

To help visualize these brief, transient interactions, Li and Wahl turned to a molecule called luciferase, an enzyme that generates bioluminescence of the sort used by fireflies to make their bodies glow. The scientists adapted an old method in which luciferase is split in half to make two non-functional fragments. The scientists attached each half of the luciferase to two proteins of interest so that if the proteins associate for any period of time, luciferase's two halves are brought together and emit light. The secret to the new method comes in the many tweaks and improvements that Li added to the system, which is symbolized by the acronym he and Wahl apply to the method--ReBiL--which indicates "recombinase enhanced bi-molecular luciferase complementation."

"It works like a bulb and a lamp," says Wahl, who is also the holder of Salk's Daniel and Martina Lewis Chair. "Neither one lights up without the other. The ReBiL method provides a very fast and easy way of seeing whether the bulb will fit into the lamp socket."

To test the method, Wahl and Li applied it to the interaction between two proteins, Ube2t and FANCL, that's been notoriously hard to observe and had never been seen in living mammalian cells. These proteins are important because they are involved in the cell's ability to detect and repair DNA damage, a function that is often disrupted in diseases. Mutations in FANCL, for instance, cause rare blood disorders and dispose people to cancer. The ability of ReBiL to reveal the stealthy FANCL-Ube2t reaction suggested the method could be a powerful technique for observing other similarly challenging interactions.

The Salk scientists then used ReBiL to study a promising target for cancer, the interaction between the proteins p53 and Mdm2. The function of p53 is affected in almost all cancers and, in many cancers, too much Mdm2 prevents p53 from functioning properly. Hence, a major goal of cancer scientists has been to develop drugs that prevent Mdm2 from binding to p53, and to thereby activate p53 to kill the tumor cell.

Wahl, Li and their colleagues used ReBiL to confirm that some drugs work as expected to prevent Mdm2 from binding to p53. On the other hand, when they applied their method to a new class of promising drugs called stapled peptides, they found that the drugs had difficulty entering cells and had the unexpected and unintended ability to kill cells by punching holes in their protective covering (the membrane). Despite spending millions of dollars to develop these drugs, this dangerous side effect was not observed because previous methods did not reveal it. ReBiL provides a fast and simple way to try to improve stapled peptides to enable them to get into the cell, bind to their targets and kill cells by the specific route they were designed to use.

The fact that ReBiL can be used to study living cells (as opposed to many older methods that use isolated proteins from cells to determine their interactions) makes it an ideal way to observe these unexpected side effects and to modify the drugs to eliminate them, Wahl says.

"We think the method is already so good and so versatile that we're already applying it to many different questions," Wahl says. "It has applications from understanding many growth regulatory pathways and for understanding critical processes that should lead to the identification of the targets needed for the development of new therapies. Not unexpectedly, academics in many fields as well as companies have already shown interest."

Wahl and Li imagine ReBiL being used in the future to discover new interactions between proteins that might serve as cancer drug targets, as well as being used in robotic systems to identify drugs that disrupt protein interactions. They also foresee using the technology to help avoid the off-target effects they have already identified for stapled peptides.

Alan Saghatelian, a professor in Salk's Clayton Foundations Laboratories for Peptide Biology, says ReBil is an important new technological platform for scientists. "This will have a powerful impact on the development of new medicines and the discovery of novel biological mechanisms," says Saghatelian, who was not involved in the study. "The results demonstrate the value of this approach in prioritizing drug candidates and understanding mechanisms of drug action."

INFORMATION:

Other researchers on the study were Luo Wei Rodewald, Christian Hoppmann, Ee Tsin Wong and Lei Wang of the Salk Institute for Biological Studies; and Sylvain Lebreton, Pavel Safar, Marcel Patek, and Kenneth Wertman of Sanofi Tucson Innovation Center.

The work was supported by grants from the National Institutes of Health, a Cancer Center Support Grant, a Salk Innovation Grant, a Sanofi-sponsored research grant, and the Leona M. and Harry B. Helmsley Charitable Trust.

About the Salk Institute for Biological Studies: The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probes fundamental life science questions in a unique, collaborative and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology and related disciplines. Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, MD, the Institute is an independent nonprofit organization and architectural landmark.


[Attachments] See images for this press release:
Salk scientists unveil powerful method to speed cancer drug discovery Salk scientists unveil powerful method to speed cancer drug discovery 2

ELSE PRESS RELEASES FROM THIS DATE:

Out of danger: A neural basis for avoiding threats

2014-11-20
Researchers at the RIKEN Brain Science Institute in Japan have identified a key neuronal pathway that makes learning to avoid unpleasant situations possible. Published online in the November 20 issue of Neuron, the work shows that avoidance learning requires neural activity in the habenula representing changes in future expectations. Learning to avoid threats is an essential survival skill for both humans and animals. To do so, animals must be able to predict a danger and then update their predictions based on their actions and new outcomes. Until now, the neural mechanisms ...

Largest-ever map of the human interactome predicts new cancer genes

2014-11-20
Scientists have created the largest-scale map to date of direct interactions between proteins encoded by the human genome and newly predicted dozens of genes to be involved in cancer. The new "human interactome" map describes about 14,000 direct interactions between proteins. The interactome is the network formed by proteins and other cellular components that 'stick together.' The new map is over four times larger than any previous map of its kind, containing more high-quality interactions than have come from all previous studies put together. CIFAR Senior Fellow ...

Penn researchers unwind the mysteries of the cellular clock

Penn researchers unwind the mysteries of the cellular clock
2014-11-20
PHILADELPHIA - Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it is increasingly clear that disruption of those cycles can lead to metabolic disease. Underlying these circadian rhythms is a molecular clock built of DNA-binding proteins called transcription factors. These proteins control the oscillation of circadian genes, serving as the wheels and springs of the clock itself. Yet not all circadian cycles peak at the ...

The cellular origin of fibrosis

The cellular origin of fibrosis
2014-11-20
Harvard Stem Cell Institute scientists at Brigham and Women's Hospital have found the cellular origin of the tissue scarring caused by organ damage associated with diabetes, lung disease, high blood pressure, kidney disease, and other conditions. The buildup of scar tissue is known as fibrosis. Fibrosis has a number of consequences, including inflammation, and reduced blood and oxygen delivery to the organ. In the long term, the scar tissue can lead to organ failure and eventually death. It is estimated that fibrosis contributes to 45 percent of all deaths in the developed ...

A CNIO team discovers that a derivative of vitamin B3 prevents liver cancer in mice

A CNIO team discovers that a derivative of vitamin B3 prevents liver cancer in mice
2014-11-20
Liver cancer is one of the most frequent cancers in the world, and with the worst prognosis; according to the World Health Organisation (WHO), in 2012, 745,000 deaths were registered worldwide due to this cause, a figure only surpassed by lung cancer. The most aggressive and frequent form of liver cancer is hepato-cellular carcinoma (HCC); little is known about it and there are relatively few treatment options. Researchers from the Spanish National Cancer Research Centre (CNIO), have produced the first mouse model that faithfully reproduces the steps of human HCC development, ...

Pluripotent cells created by nuclear transfer can prompt immune reaction, researchers find

2014-11-20
Mouse cells and tissues created through nuclear transfer can be rejected by the body because of a previously unknown immune response to the cell's mitochondria, according to a study in mice by researchers at the Stanford University School of Medicine and colleagues in Germany, England and at MIT. The findings reveal a likely, but surmountable, hurdle if such therapies are ever used in humans, the researchers said. Stem cell therapies hold vast potential for repairing organs and treating disease. The greatest hope rests on the potential of pluripotent stem cells, which ...

Every step you take: STING pathway key to tumor immunity

2014-11-20
A recently discovered protein complex known as STING plays a crucial role in detecting the presence of tumor cells and promoting an aggressive anti-tumor response by the body's innate immune system, according to two separate studies published in the Nov. 20 issue of the journal Immunity. The studies, both from University of Chicago-based research teams, have major implications for the growing field of cancer immunotherapy. The findings show that when activated, the STING pathway triggers a natural immune response against the tumor. This includes production of chemical ...

Don't get hacked! Research shows how much we ignore online warnings

Dont get hacked! Research shows how much we ignore online warnings
2014-11-20
Say you ignored one of those "this website is not trusted" warnings and it led to your computer being hacked. How would you react? Would you: A. Quickly shut down your computer? B. Yank out the cables? C. Scream in cyber terror? For a group of college students participating in a research experiment, all of the above were true. These gut reactions (and more) happened when a trio of Brigham Young University researchers simulated hacking into study participants' personal laptops. "A lot of them freaked out--you could hear them audibly make noises from our observation ...

The STING of radiation

2014-11-20
November 20, 2014, Chicago, IL - A team of researchers led by Ludwig Chicago's Yang-Xin Fu and Ralph Weichselbaum has uncovered the primary signaling mechanisms and cellular interactions that drive immune responses against tumors treated with radiotherapy. Published in the current issue of Immunity, their study suggests novel strategies for boosting the effectiveness of radiotherapy, and for combining it with therapies that harness the immune system to treat cancer. "Much of the conversation about the mechanisms by which radiation kills cancer cells has historically focused ...

Antiangiogenic treatment improves survival in animal model of ovarian cancer

2014-11-20
BOSTON -- Epithelial ovarian cancer is the most lethal cancer of the female reproductive organs, with more than 200,000 new cases and more than 125,000 deaths each year worldwide. Because symptoms tend to be vague, 80 percent of these cancers are not recognized until the disease has advanced and spread to other parts of the body. The standard treatment for advanced ovarian cancer includes high-dose chemotherapy, which often results in debilitating side effects and for which the five-year survival rate is only 35 percent. Now new research in an animal model finds that ...

LAST 30 PRESS RELEASES:

TNF inhibitors prevent complications in kids with Crohn's disease, recommended as first-line therapies

Twisted Edison: Bright, elliptically polarized incandescent light

Structural cell protein also directly regulates gene transcription

Breaking boundaries: Researchers isolate quantum coherence in classical light systems

Brain map clarifies neuronal connectivity behind motor function

Researchers find compromised indoor air in homes following Marshall Fire

Months after Colorado's Marshall Fire, residents of surviving homes reported health symptoms, poor air quality

Identification of chemical constituents and blood-absorbed components of Shenqi Fuzheng extract based on UPLC-triple-TOF/MS technology

'Glass fences' hinder Japanese female faculty in international research, study finds

Vector winds forecast by numerical weather prediction models still in need of optimization

New research identifies key cellular mechanism driving Alzheimer’s disease

Trends in buprenorphine dispensing among adolescents and young adults in the US

Emergency department physicians vary widely in their likelihood of hospitalizing a patient, even within the same facility

Firearm and motor vehicle pediatric deaths— intersections of age, sex, race, and ethnicity

Association of state cannabis legalization with cannabis use disorder and cannabis poisoning

Gestational hypertension, preeclampsia, and eclampsia and future neurological disorders

Adoption of “hospital-at-home” programs remains concentrated among larger, urban, not-for-profit and academic hospitals

Unlocking the mysteries of the human gut

High-quality nanodiamonds for bioimaging and quantum sensing applications

New clinical practice guideline on the process for diagnosing Alzheimer’s disease or a related form of cognitive impairment or dementia

Evolution of fast-growing fish-eating herring in the Baltic Sea

Cryptographic protocol enables secure data sharing in the floating wind energy sector

Can drinking coffee or tea help prevent head and neck cancer?

Development of a global innovative drug in eye drop form for treating dry age-related macular degeneration

Scientists unlock secrets behind flowering of the king of fruits

Texas A&M researchers illuminate the mysteries of icy ocean worlds

Prosthetic material could help reduce infections from intravenous catheters

Can the heart heal itself? New study says it can

Microscopic discovery in cancer cells could have a big impact

Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer

[Press-News.org] Salk scientists unveil powerful method to speed cancer drug discovery