Immune cells from the spleen found to control chronic high blood pressure
2014-11-20
(Press-News.org) High blood pressure is a leading cause of death around the world, and its prevalence continues to rise. A study published by Cell Press on November 20th in the journal Immunity shows that a protein in the spleen called placental growth factor (PlGF) plays a critical role in activating a harmful immune response that leads to the onset of high blood pressure in mice. The findings pave the way for the development of more effective treatments for this common and deadly condition.
High blood pressure, also known as hypertension, affects more than 1 billion people worldwide and is a major risk factor for stroke, heart failure, and kidney diseases. Mounting evidence suggests that immune cells such as T cells contribute to the development of hypertension, but the underlying mechanisms have not been clear. Senior study author Giuseppe Lembo of IRCCS Neuromed and his team suspected that PlGF could be the missing link because it plays important roles in both the cardiovascular system and the immune system.
The researchers found support for this idea in the new study. Mice that were genetically engineered to lack PlGF did not develop hypertension after they were infused with angiotensin II--a hormone that normally increases blood pressure. These mice were also protected from hypertension-related heart and kidney damage, unlike genetically normal mice. Moreover, PlGF deficiency prevented T cells from leaving the spleen, entering the blood stream, and infiltrating the vessels and kidneys where hypertension was manifested. Additional experiments revealed that the nervous system controls levels of PlGF in the spleen, and PlGF in the spleen in turn is essential for the activation of T cells and the onset of hypertension.
"In recent years, anti-PlGF monoclonal antibodies have been developed as a strategy to slow tumor growth and for age-related macular degeneration," says lead study author Daniela Carnevale. "The ongoing clinical trials testing humanized monoclonal antibodies directed to PlGF opens up the possibility of targeting it in hypertension too."
"There is a pressing need for new treatments to control and better target resistant hypertension," says Lembo. "PlGF is an appealing molecular therapeutic target because clinical tools to target this pathway already exist."
INFORMATION:
Immunity, Carnevale et al.: "The angiogenic factor PlGF mediates a neuroimmune interaction in the spleen to allow the onset of hypertension"
ELSE PRESS RELEASES FROM THIS DATE:
2014-11-20
The portion of the adult brain responsible for complex thought, known as the cerebral cortex, lacks the ability to replace neurons that die as a result of Alzheimer's disease, stroke, and other devastating diseases. A study in the International Society for Stem Cell Research's journal Stem Cell Reports, published by Cell Press on November 20 shows that a Sox2 protein, alone or in combination with another protein, Ascl1, can cause nonneuronal cells, called NG2 glia, to turn into neurons in the injured cerebral cortex of adult mice. The findings reveal that NG2 glia represent ...
2014-11-20
As we age, we have an increasingly harder time ignoring distractions. But new research online November 20 in the Cell Press journal Neuron reveals that by learning to make discriminations of a sound amidst progressively more disruptive distractions, we can diminish our distractibility. A similar strategy might also help children with attention deficits or individuals with other mental challenges.
Distractibility, or the inability to sustain focus on a goal due to attention to irrelevant stimuli, can have a negative effect on basic daily activities, and it is a hallmark ...
2014-11-20
CINCINNATI - Researchers have successfully targeted an important molecular pathway that fuels a variety of cancers and related developmental syndromes called "Rasopathies."
Reporting their results Nov. 20 in Chemistry & Biology, scientists at Cincinnati Children's Hospital Medical Center say they identified a class of lead compounds that successfully recognize a key target in the Ras signaling pathway - opening the door to future development of therapies that could make treatments more effective with fewer side effects.
Although still in the early stages of the development ...
2014-11-20
While investigating a rare genetic disorder, researchers at the University of California, San Diego School of Medicine have discovered that a ubiquitous signaling molecule is crucial to cellular reprogramming, a finding with significant implications for stem cell-based regenerative medicine, wound repair therapies and potential cancer treatments.
The findings are published in the Nov. 20 online issue of Cell Reports.
Karl Willert, PhD, assistant professor in the Department of Cellular and Molecular Medicine, and colleagues were attempting to use induced pluripotent ...
2014-11-20
VIDEO:
Researchers at the Salk Institute explain how a new technology, called ReBiL, can spot protein interactions more accurately, providing a new tool for cancer and other drug diagnostics.
Click here for more information.
LA JOLLA--For decades, researchers have struggled to translate basic scientific discoveries about cancer into therapeutics that effectively--and with minimal side effects--shrink a tumor.
One avenue that may hold great potential is the development of ...
2014-11-20
Researchers at the RIKEN Brain Science Institute in Japan have identified a key neuronal pathway that makes learning to avoid unpleasant situations possible. Published online in the November 20 issue of Neuron, the work shows that avoidance learning requires neural activity in the habenula representing changes in future expectations.
Learning to avoid threats is an essential survival skill for both humans and animals. To do so, animals must be able to predict a danger and then update their predictions based on their actions and new outcomes. Until now, the neural mechanisms ...
2014-11-20
Scientists have created the largest-scale map to date of direct interactions between proteins encoded by the human genome and newly predicted dozens of genes to be involved in cancer.
The new "human interactome" map describes about 14,000 direct interactions between proteins. The interactome is the network formed by proteins and other cellular components that 'stick together.' The new map is over four times larger than any previous map of its kind, containing more high-quality interactions than have come from all previous studies put together.
CIFAR Senior Fellow ...
2014-11-20
PHILADELPHIA - Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it is increasingly clear that disruption of those cycles can lead to metabolic disease.
Underlying these circadian rhythms is a molecular clock built of DNA-binding proteins called transcription factors. These proteins control the oscillation of circadian genes, serving as the wheels and springs of the clock itself. Yet not all circadian cycles peak at the ...
2014-11-20
Harvard Stem Cell Institute scientists at Brigham and Women's Hospital have found the cellular origin of the tissue scarring caused by organ damage associated with diabetes, lung disease, high blood pressure, kidney disease, and other conditions. The buildup of scar tissue is known as fibrosis.
Fibrosis has a number of consequences, including inflammation, and reduced blood and oxygen delivery to the organ. In the long term, the scar tissue can lead to organ failure and eventually death. It is estimated that fibrosis contributes to 45 percent of all deaths in the developed ...
2014-11-20
Liver cancer is one of the most frequent cancers in the world, and with the worst prognosis; according to the World Health Organisation (WHO), in 2012, 745,000 deaths were registered worldwide due to this cause, a figure only surpassed by lung cancer. The most aggressive and frequent form of liver cancer is hepato-cellular carcinoma (HCC); little is known about it and there are relatively few treatment options.
Researchers from the Spanish National Cancer Research Centre (CNIO), have produced the first mouse model that faithfully reproduces the steps of human HCC development, ...
LAST 30 PRESS RELEASES:
[Press-News.org] Immune cells from the spleen found to control chronic high blood pressure