PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Caltech geologists discover ancient buried canyon in South Tibet

Caltech geologists discover ancient buried canyon in South Tibet
2014-11-20
(Press-News.org) A team of researchers from Caltech and the China Earthquake Administration has discovered an ancient, deep canyon buried along the Yarlung Tsangpo River in south Tibet, north of the eastern end of the Himalayas. The geologists say that the ancient canyon--thousands of feet deep in places--effectively rules out a popular model used to explain how the massive and picturesque gorges of the Himalayas became so steep, so fast.

"I was extremely surprised when my colleagues, Jing Liu-Zeng and Dirk Scherler, showed me the evidence for this canyon in southern Tibet," says Jean-Philippe Avouac, the Earle C. Anthony Professor of Geology at Caltech. "When I first saw the data, I said, 'Wow!' It was amazing to see that the river once cut quite deeply into the Tibetan Plateau because it does not today. That was a big discovery, in my opinion."

Geologists like Avouac and his colleagues, who are interested in tectonics--the study of the earth's surface and the way it changes--can use tools such as GPS and seismology to study crustal deformation that is taking place today. But if they are interested in studying changes that occurred millions of years ago, such tools are not useful because the activity has already happened. In those cases, rivers become a main source of information because they leave behind geomorphic signatures that geologists can interrogate to learn about the way those rivers once interacted with the land--helping them to pin down when the land changed and by how much, for example.

"In tectonics, we are always trying to use rivers to say something about uplift," Avouac says. "In this case, we used a paleocanyon that was carved by a river. It's a nice example where by recovering the geometry of the bottom of the canyon, we were able to say how much the range has moved up and when it started moving."

The team reports its findings in the current issue of Science.

Last year, civil engineers from the China Earthquake Administration collected cores by drilling into the valley floor at five locations along the Yarlung Tsangpo River. Shortly after, former Caltech graduate student Jing Liu-Zeng, who now works for that administration, returned to Caltech as a visiting associate and shared the core data with Avouac and Dirk Scherler, then a postdoc in Avouac's group. Scherler had previously worked in the far western Himalayas, where the Indus River has cut deeply into the Tibetan Plateau, and immediately recognized that the new data suggested the presence of a paleocanyon.

Liu-Zeng and Scherler analyzed the core data and found that at several locations there were sedimentary conglomerates, rounded gravel and larger rocks cemented together, that are associated with flowing rivers, until a depth of 800 meters or so, at which point the record clearly indicated bedrock. This suggested that the river once carved deeply into the plateau.

To establish when the river switched from incising bedrock to depositing sediments, they measured two isotopes, beryllium-10 and aluminum-26, in the lowest sediment layer. The isotopes are produced when rocks and sediment are exposed to cosmic rays at the surface and decay at different rates once buried, and so allowed the geologists to determine that the paleocanyon started to fill with sediment about 2.5 million years ago.

The researchers' reconstruction of the former valley floor showed that the slope of the river once increased gradually from the Gangetic Plain to the Tibetan Plateau, with no sudden changes, or knickpoints. Today, the river, like most others in the area, has a steep knickpoint where it meets the Himalayas, at a place known as the Namche Barwa massif. There, the uplift of the mountains is extremely rapid (on the order of 1 centimeter per year, whereas in other areas 5 millimeters per year is more typical) and the river drops by 2 kilometers in elevation as it flows through the famous Tsangpo Gorge, known by some as the Yarlung Tsangpo Grand Canyon because it is so deep and long.

Combining the depth and age of the paleocanyon with the geometry of the valley, the geologists surmised that the river existed in this location prior to about 3 million years ago, but at that time, it was not affected by the Himalayas. However, as the Indian and Eurasian plates continued to collide and the mountain range pushed northward, it began impinging on the river. Suddenly, about 2.5 million years ago, a rapidly uplifting section of the mountain range got in the river's way, damming it, and the canyon subsequently filled with sediment.

"This is the time when the Namche Barwa massif started to rise, and the gorge developed," says Scherler, one of two lead authors on the paper and now at the GFZ German Research Center for Geosciences in Potsdam, Germany.

That picture of the river and the Tibetan Plateau, which involves the river incising deeply into the plateau millions of years ago, differs quite a bit from the typically accepted geologic vision. Typically, geologists believe that when rivers start to incise into a plateau, they eat at the edges, slowly making their way into the plateau over time. However, the rivers flowing across the Himalayas all have strong knickpoints and have not incised much at all into the Tibetan Plateau. Therefore, the thought has been that the rapid uplift of the Himalayas has pushed the rivers back, effectively pinning them, so that they have not been able to make their way into the plateau. But that explanation does not work with the newly discovered paleocanyon.

The team's new hypothesis also rules out a model that has been around for about 15 years, called tectonic aneurysm, which suggests that the rapid uplift seen at the Namche Barwa massif was triggered by intense river incision. In tectonic aneurysm, a river cuts down through the earth's crust so fast that it causes the crust to heat up, making a nearby mountain range weaker and facilitating uplift.

The model is popular among geologists, and indeed Avouac himself published a modeling paper in 1996 that showed the viability of the mechanism. "But now we have discovered that the river was able to cut into the plateau way before the uplift happened," Avouac says, "and this shows that the tectonic aneurysm model was actually not at work here. The rapid uplift is not a response to river incision."

INFORMATION:

The other lead author on the paper, "Tectonic control of the Yarlung Tsangpo Gorge, revealed by a 2.5 Myr old buried canyon in Southern Tibet," is Ping Wang of the State Key Laboratory of Earthquake Dynamics, in Beijing, China. Additional authors include Jürgen Mey, of the University of Potsdam, in Germany; and Yunda Zhang and Dingguo Shi of the Chengdu Engineering Corporation, in China. The work was supported by the National Natural Science Foundation of China, the State Key Laboratory for Earthquake Dynamics, and the Alexander von Humboldt Foundation.


[Attachments] See images for this press release:
Caltech geologists discover ancient buried canyon in South Tibet

ELSE PRESS RELEASES FROM THIS DATE:

Tropical rickettsial illnesses associated with adverse pregnancy outcomes

2014-11-20
Bangkok (Thailand)- A recent study from the Thai-Myanmar border highlights the severe and previously under-reported adverse impact of readily treatable tropical rickettsial illnesses, notably scrub typhus and murine typhus, on pregnancy outcomes, finding that more than one third of affected pregnancies resulted either in stillbirth or premature and/or low birth weight babies. Conducted by Prof Rose McGready and Assoc. Prof Daniel Henry Paris from the Shoklo Malaria Research Unit (SMRU) in Mae Sot, Thailand, and the Mahidol Oxford Research Unit (MORU) in Bangkok, affiliated ...

University of Kentucky reports HIV/AIDS drugs could be repurposed to treat AMD

University of Kentucky reports HIV/AIDS drugs could be repurposed to treat AMD
2014-11-20
LEXINGTON, Ky. (Nov. 20, 2014) - A landmark study published today in the journal Science by an international group of scientists, led by the laboratory of Dr. Jayakrishna Ambati, professor & vice chair of the Department of Ophthalmology & Visual Sciences at the University of Kentucky, reports that HIV/AIDS drugs that have been used for the last 30 years could be repurposed to treat age-related macular degeneration (AMD), as well as other inflammatory disorders, because of a previously undiscovered intrinsic and inflammatory activity those drugs possess. AMD is a progressive ...

How to estimate the magnetic field of an exoplanet?

2014-11-20
Scientists developed a new method which allows to estimate the magnetic field of a distant exoplanet, i.e., a planet, which is located outside the Solar system and orbits a different star. Moreover, they managed to estimate the value of the magnetic moment of the planet HD 209458b.The group of scientists including one of the researchers of the Lomonosov Moscow State University (Russia) published their article in the Science magazine. In the two decades which passed since the discovery of the first planet outside the Solar system, astronomers have made a great progress ...

Imagination, reality flow in opposite directions in the brain

Imagination, reality flow in opposite directions in the brain
2014-11-20
MADISON, Wis. -- As real as that daydream may seem, its path through your brain runs opposite reality. Aiming to discern discrete neural circuits, researchers at the University of Wisconsin-Madison have tracked electrical activity in the brains of people who alternately imagined scenes or watched videos. "A really important problem in brain research is understanding how different parts of the brain are functionally connected. What areas are interacting? What is the direction of communication?" says Barry Van Veen, a UW-Madison professor of electrical and computer engineering. ...

Halting the hijacker: Cellular targets to thwart influenza virus infection

2014-11-20
MADISON, Wis. - The influenza virus, like all viruses, is a hijacker. It quietly slips its way inside cells, steals the machinery inside to make more copies of itself, and then -- having multiplied -- bursts out of the cell to find others to infect. Most drugs currently used to treat influenza are designed to attack the virus, to render it incapacitated. But influenza viruses are sneaky, capable of mutating to avoid destruction by the drug. In a comprehensive new study published today in the journal Cell Host and Microbe, the University of Wisconsin-Madison's Yoshihiro ...

UO-industry collaboration points to improved nanomaterials

UO-industry collaboration points to improved nanomaterials
2014-11-20
EUGENE, Ore. -- Nov. 20, 2014 -- A potential path to identify imperfections and improve the quality of nanomaterials for use in next-generation solar cells has emerged from a collaboration of University of Oregon and industry researchers. To increase light-harvesting efficiency of solar cells beyond silicon's limit of about 29 percent, manufacturers have used layers of chemically synthesized semiconductor nanocrystals. Properties of quantum dots that are produced are manipulated by controlling the synthetic process and surface chemical structure. This process, however, ...

Longer work hours for moms mean less sleep, higher BMIs for preschoolers

2014-11-20
CHAMPAIGN, Ill. -- The majority of preschoolers may not be getting the amount of sleep they need each night, placing them at higher risk of being overweight or obese within a year, according to a new study. Published online by the journal Sleep Medicine, the study investigated links between mothers' employment status and their children's weight over time, exploring the impact of potential mediators, such as children's sleep and dietary habits, the amount of time they spent watching TV and family mealtime routines. "The only factor of the four that we investigated that ...

Testosterone plays modest role in menopausal women's sexual function

2014-11-20
Washington, DC--Levels of testosterone and other naturally-occurring reproductive hormones play a limited role in driving menopausal women's interest in sex and sexual function, according to a new study published in the Endocrine Society's Journal of Clinical Endocrinology & Metabolism. While testosterone is the main sex hormone in men, women also have small amounts of it. The ovaries naturally produce testosterone. Researchers set out to examine the role the hormone plays in sexual function as women go through menopause. "While levels of testosterone and other reproductive ...

Exercise regimens offer little benefit for 1 in 5 people with type 2 diabetes

2014-11-20
Washington, DC--As many as one in five people with Type 2 diabetes do not see any improvement in blood sugar management when they engage in a supervised exercise regimen, according to a new scientific review published in the Endocrine Society's Journal of Clinical Endocrinology & Metabolism. People develop Type 2 diabetes when their bodies become resistant to the hormone insulin, which carries sugar from the blood to cells. This leads to excess sugar in the bloodstream. The U.S. Centers for Disease Control and Prevention projects about 40 percent of Americans will develop ...

Quantum mechanical calculations reveal the hidden states of enzyme active sites

Quantum mechanical calculations reveal the hidden states of enzyme active sites
2014-11-20
Enzymes carry out fundamental biological processes such as photosynthesis, nitrogen fixation and respiration, with the help of clusters of metal atoms as "active" sites. But scientists lack basic information about their function because the states thought to be critical to their chemical abilities cannot be experimentally observed. Now, researchers at Princeton University have reported the first direct observation of the electronic states of iron-sulfur clusters, common to many enzyme active sites. Published on August 31 in the journal Nature Chemistry, the states were ...

LAST 30 PRESS RELEASES:

Evolution of fast-growing fish-eating herring in the Baltic Sea

Cryptographic protocol enables secure data sharing in the floating wind energy sector

Can drinking coffee or tea help prevent head and neck cancer?

Development of a global innovative drug in eye drop form for treating dry age-related macular degeneration

Scientists unlock secrets behind flowering of the king of fruits

Texas A&M researchers illuminate the mysteries of icy ocean worlds

Prosthetic material could help reduce infections from intravenous catheters

Can the heart heal itself? New study says it can

Microscopic discovery in cancer cells could have a big impact

Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer

Breakthrough new material brings affordable, sustainable future within grasp

How everyday activities inside your home can generate energy

Inequality weakens local governance and public satisfaction, study finds

Uncovering key molecular factors behind malaria’s deadliest strain

UC Davis researchers help decode the cause of aggressive breast cancer in women of color

Researchers discovered replication hubs for human norovirus

SNU researchers develop the world’s most sensitive flexible strain sensor

Tiny, wireless antennas use light to monitor cellular communication

Neutrality has played a pivotal, but under-examined, role in international relations, new research shows

Study reveals right whales live 130 years — or more

Researchers reveal how human eyelashes promote water drainage

Pollinators most vulnerable to rising global temperatures are flies, study shows

DFG to fund eight new research units

Modern AI systems have achieved Turing's vision, but not exactly how he hoped

Quantum walk computing unlocks new potential in quantum science and technology

Construction materials and household items are a part of a long-term carbon sink called the “technosphere”

First demonstration of quantum teleportation over busy Internet cables

Disparities and gaps in breast cancer screening for women ages 40 to 49

US tobacco 21 policies and potential mortality reductions by state

AI-driven approach reveals hidden hazards of chemical mixtures in rivers

[Press-News.org] Caltech geologists discover ancient buried canyon in South Tibet