(Press-News.org) A team of scientists that included researchers from UCLA has discovered a novel mechanism of RNA regulation in embryonic stem cells. The findings are strong evidence that a specific chemical modification, or "tag," on RNA plays a key role in determining the ability of embryonic stem cells to adopt different cellular identities.
The team also included scientists from Harvard Medical School, Massachusetts General Hospital and Stanford University.
Published in the journal Cell Stem Cell, the research reveals that depleting or knocking out a key component of the machinery that places this chemical tag -- known both as m6A and N6-methyladenosine -- on RNA significantly blocks embryonic stem cells from differentiating into more specialized types of cells.
A key property of embryonic stem cells is their ability to differentiate into many specialized types of cells. However, instead of marching toward a specific fate when prompted by signals to differentiate, embryonic stem cells that have reduced ability to place m6A become stuck in a sort of suspended animation, even though they appear healthy.
Yi Xing, a UCLA associate professor of microbiology, immunology and molecular genetics, led the informatics analyses and was a co-corresponding author of the paper. Other corresponding authors were Dr. Cosmas Giallourakis, an assistant professor of medicine at Harvard Medical School and Massachusetts General Hospital, and Dr. Howard Chang, a professor of Stanford University's School of Medicine and a Howard Hughes Medical Institute investigator.
The study of naturally occurring chemical modifications on RNAs is part of an emerging field known as epitranscriptomics. The m6A tag is the most commonly occurring modification known to scientists; it is found on RNAs of thousands of protein-coding genes and hundreds of non-coding genes in a typical cell type. The tags may help regulate RNA metabolism by marking them for destruction.
Little was known about the dynamics, conservation and function of m6A in human or mouse embryonic stem cells when the authors began the project. The authors analyzed which RNAs were tagged with m6A and the location of the m6A modifications along RNAs in mouse and human embryonic stem cells.
"Our analysis revealed a high level of conservation of m6A patterns between mice and humans, suggesting that m6A has conserved functions in human and mouse embryonic stem cells," Xing said. "Moreover, RNAs with m6A tags were degraded more rapidly and lived a shorter life in the cell than those without."
The investigators then found a strikingly conserved requirement for the presence of normal levels of m6A for differentiating embryonic stem cells into multiple cell types. Depletion of METTL3, a gene encoding the enzyme that places the m6A tag on RNAs, severely blocked human embryonic stem cells from differentiating into the gut or neural precursors. Deletion of the mouse METTL3 gene also led to a severe block in the ability of embryonic stem cells to differentiate into neural and cardiac lineages.
The study suggests that m6A modifications on RNA make the transition between cell states possible by instructing the cells to physically degrade those RNAs marked by m6A in embryonic stem cells, to allow the cells to become another cell type. However, if the cells can no longer tag RNA for destruction, the cells lose the ability to change. This discovery sheds new light on gene regulation in stem cells.
Among the research's potential applications, the development of chemical inhibitors of the METTL3 enzyme may help maintain stem cells undifferentiated for medical research and biotechnology applications. In the long run, this could be a step toward substantially less expensive stem cell research protocols.
"Our collaborative work sets the conceptual rationale to develop tools for manipulating m6A levels globally or perhaps at the level of individual tags as a way to control cell identity and fate," said Giallourakis, an assistant professor of medicine at Harvard Medical School and a Harvard Stem Cell Institute-affiliated faculty member at Massachusetts General Hospital. "The scientific results represent a significant leap forward in identifying a critical new layer in both mouse and human control of stem cell flexibility."
INFORMATION:
Other authors were Alan Mullen at Harvard and Massachusetts General Hospital and Marius Wernig at Stanford's School of Medicine. Lead authors were Pedro Batista at Stanford, Benoit Molinie at Harvard Medical School and Jinkai Wang, a UCLA postdoctoral fellow.
The research was supported by the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA, the California Institute for Regenerative Medicine, the National Institutes of Health, Massachusetts General Hospital, the Damon Runyon Cancer Research Foundation, the Alfred Sloan Foundation and the Howard Hughes Medical Institute.
Friday, December 5, 2014 - London, UK - The Biogerontology Research Foundation (BGRF), a UK-based charity founded to support ageing research and address the challenges of a rapidly ageing population, will present new economic longevity research at the second Big Data Science in Medicine congress in Oxford on December 8.
The research, "Longevity expectations in the pension fund, insurance, and employee benefits industry", was recently published in the open-access journal Psychology Research and Behavior Management, and details an extensive survey of International Employee ...
A group of UCL researchers (Louvain Drug Research Institute) identified an unsuspected mechanism impacting the development of obesity and diabetes type 2 after following a diet with a high dose of fat nutrition. The team of Professor Patrice D. Cani - in direct collaboration with two French teams, a Swedish expert as well as other UCL-researchers (LDRI and Ludwig Institute) - made an important discovery related to the essential role of the intestinal immune system regarding the control of the energy metabolism.
Today, the work of Doctor Amandine Everard (in charge of ...
Vienna, Austria - 5 December 2014: New 3D printed heart technology could reduce the number of heart surgeries in children with congenital heart disease, according to Dr Peter Verschueren who spoke on the topic today at EuroEcho-Imaging 2014.1 Dr Verschueren brought 3D printed models of the heart to his lecture including models used to plan real cases in patients.
EuroEcho-Imaging is the annual meeting of the European Association of Cardiovascular Imaging (EACVI), a branch of the European Society of Cardiology (ESC), and is held 3-6 December in Vienna, Austria.
Dr Verschueren ...
Vienna, Austria - 05 December 2014: Austrian researchers have shown that a new technique which wraps chemotherapy drugs in a fatty cover (called a liposome) reduces heart damage, in a study presented today at EuroEcho-Imaging 2014 by Professor Jutta Bergler-Klein and Professor Mariann Gyöngyösi from the Medical University of Vienna, Austria.
EuroEcho-Imaging is the annual meeting of the European Association of Cardiovascular Imaging (EACVI), a branch of the European Society of Cardiology (ESC), and is held 3-6 December in Vienna.
Professor Bergler-Klein said: ...
(BOSTON) -- Stem cells offer great potential in biomedical engineering due to their pluripotency, which is the ability to multiply indefinitely and also to differentiate and develop into any kind of the hundreds of different cells and bodily tissues. But the precise complexity of how stem cell development is regulated throughout states of cellular change has been difficult to pinpoint until now.
By using powerful new single-cell genetic profiling techniques, scientists at the Wyss Institute for Biologically Inspired Engineering and Boston Children's Hospital have uncovered ...
Is the human immune system similar to the weather, a seemingly random yet dynamical system that can be modeled based on past conditions to predict future states? Scientists at VCU Massey Cancer Center's award-winning Bone Marrow Transplant (BMT) Program believe it is, and they recently published several studies that support the possibility of using next-generation DNA sequencing and mathematical modeling to not only understand the variability observed in clinical outcomes of stem cell transplantation, but also to provide a theoretical framework to make transplantation a ...
On Dec. 4, 2014, the sun emitted a mid-level solar flare, peaking at 1:25 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel.
To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at http://spaceweather.gov, ...
Forecasters at the Joint Typhoon Warning Center expect Super Typhoon Hagupit to reach peak intensity today, Dec. 4, and although expected to weaken, will remain a Category 4 typhoon when it approaches the east central Philippines. NASA's Terra satellite and NASA/JAXA's GPM and TRMM satellites have been providing forecasters with valuable data on the storm. Computer models have varied on their track for the storm based on the strength of an upper-level system, so satellite data is extremely valuable in helping determine where Hagupit will move.
On Dec. 3, typhoon Hagupit ...
(Chapel Hill, N.C. - Dec 4, 2014) - Jessica Zègre-Hemsey, a cardiac monitoring expert at the University of North Carolina at Chapel Hill, and her colleagues at the University of California San Francisco, revealed more than 2.5 million alarms were triggered on bedside monitors in a single month - the first figure ever reported from a real-world hospital setting.
Alarm fatigue occurs when nurses and other clinicians are exposed to a high number of physiological alarms generated by modern monitoring systems. In turn, alarms are ignored and critical alarms are missed ...
Petaluma, CA - Just like us, grasslands need rest to improve their health. A study just published by Point Blue Conservation Science in the journal Ecological Restoration shows a 72 percent increase in where native perennial grasses were found on a coastal California ranch when cattle grazing was changed to give the land more time to rest.
Over the last 300 years, nonnative annual grasses have invaded California's grasslands. These exotic grasses complete their lifecycle in one year and out-compete the native perennial grasses (grasses that live for multiple years). ...