(Press-News.org) Methane is a potent greenhouse gas, second only to carbon dioxide in its capacity to trap heat in Earth's atmosphere for a long time. The gas can originate from lakes and swamps, natural-gas pipelines, deep-sea vents, and livestock. Understanding the sources of methane, and how the gas is formed, could give scientists a better understanding of its role in warming the planet.
Now a research team led by scientists at MIT and including colleagues from the Woods Hole Oceanographic Institution, the University of Toronto, and elsewhere has developed an instrument that can rapidly and precisely analyze samples of environmental methane to determine how the gas was formed.
The approach, called tunable infrared laser direct absorption spectroscopy, detects the ratio of methane isotopes, which can provide a "fingerprint" to differentiate between two common origins: microbial, in which microorganisms, typically living in wetlands or the guts of animals, produce methane as a metabolic byproduct; or thermogenic, in which organic matter, buried deep within the Earth, decays to methane at high temperatures.
The researchers used the technique to analyze methane samples from settings including lakes, swamps, groundwater, deep-sea vents, and the guts of cows, as well as methane generated by microbes in the lab.
"We are interested in the question, 'Where does methane come from?'" says Shuhei Ono, an assistant professor of geochemistry in MIT's Department of Earth, Atmospheric and Planetary Sciences. "If we can partition how much is from cows, natural gas, and other sources, we can more reliably strategize what to do about global warming."
Ono and his colleagues, including first author and graduate student David Wang, publish their results this week in the journal Science.
Locking in on methane's frequency
Methane is a molecule composed of one carbon atom linked to four hydrogen atoms. Carbon can come as one of two isotopes (carbon-12 or carbon-13); hydrogen can also take two forms, including as deuterium -- an isotope of hydrogen with one extra neutron.
The authors looked for a very rare molecule of doubly isotope-substituted methane, known as 13CH3D -- a molecule with both an atom of carbon-13 and a deuterium atom. Detecting 13CH3D was crucial, the researchers reasoned, as it may be a signal of the temperature at which methane formed -- essential for determining whether methane is microbial or thermogenic in origin.
Last year, Ono and colleagues, working with scientists from Aerodyne Research, built an instrument to detect 13CH3D. The technique uses infrared spectroscopy to detect specific frequencies corresponding to minute motions within molecules of methane; different frequencies correspond to different isotopes. This spectroscopic approach, which is fundamentally different from the classical mass spectrometric methods being developed by others, has the advantage of portability, allowing its potential deployment in field locations.
Methane's pulse
The team collected samples of methane from settings such as lakes, swamps, natural gas reservoirs, the digestive tracts of cows, and deep ancient groundwater, as well as methane made by microbes in the lab.
The group noticed something surprising and unexpected in some samples. For example, based on the isotope ratios they detected in cow rumen, they calculated that this methane formed at 400 degrees Celsius -- impossible, as cow stomachs are typically about 40 C. They observed similar incongruences in samples from lakes and swamps. The isotope ratios, they reasoned, must not be a perfect indicator of temperature.
Instead, Wang and his colleagues identified a relationship between a feature of the bonds linking carbon and hydrogen in methane molecules -- a quality they deemed "clumpiness" -- and the rate at which methane was produced: The clumpier the bond, the slower the rate of methanogenesis.
"Cow guts produce methane at very high rates -- up to 500 liters a day per cow. They're giant methane fermenters, and they prefer to make less-clumped methane, compared to geologic processes, which happen very slowly," Wang says. "We're measuring a degree of clumpiness of the carbon and hydrogen isotopes that helps us get an idea of how fast the methane formed."
The researchers applied this new interpretation to methane formed by microbes in the lab, and found good agreement between the isotopes detected and the rates at which the gas formed. They then used the technique to analyze methane from Kidd Creek Mine, in Canada -- one of the deepest accessible points on Earth -- and two sites in California where the Earth's mantle rock reacts with groundwater. These are sites in which the origins of methane were unclear.
"It's been a longstanding question how those fluids were developed," Wang says. "Now we have a baseline that we can use to explore how methane forms in environments on Earth and beyond."
INFORMATION:
This research was funded in part by the National Science Foundation, Shell Oil, the Deep Carbon Observatory, the National Sciences and Engineering Research Council of Canada, and the German Research Foundation.
Related links
ARCHIVE: How to count methane emissions
http://newsoffice.mit.edu/2014/how-count-methane-emissions-0425
ARCHIVE: Ancient whodunit may be solved: The microbes did it!
http://newsoffice.mit.edu/2014/ancient-whodunit-may-be-solved-microbes-did-it
RIVERSIDE, Calif. - Soybean oil accounts for more than 90 percent of all the seed oil production in the United States. Genetically modified (GM) soybean oil, made from seeds of GM soybean plants, was recently introduced into the food supply on the premise that it is healthier than conventional soybean oil.
But is that premise true?
Just barely, say scientists at the University of California, Riverside and their colleagues at UC Davis. The researchers compared the effects of both oils in experiments performed in the lab on mice. They found that the GM soybean oil is ...
Astronomers have glimpsed a far off and ancient star exploding, not once, but four times.
The exploding star, or supernova, was directly behind a cluster of huge galaxies, whose mass is so great that they warp space-time. This forms a cosmic magnifying glass that creates multiple images of the supernova, an effect first predicted by Albert Einstein's General Theory of Relativity 100 years ago.
Dr Brad Tucker from The Australian National University (ANU) says it's a dream discovery for the team.
"It's perfectly set up, you couldn't have designed a better experiment," ...
Take a wild, common forest-dwelling mouse-like rodent, known as a vole, and subject it to 13 rounds of selection for increased aerobic exercise metabolism, and what do you get? A mighty "mouse" with a 48 percent higher peak rate of oxygen consumption and an increased basal metabolic rate, compared to unselected controls.
In a new study appearing in the advanced online edition of Molecular Biology and Evolution, authors Konczal et al. took advantage of an experimental evolution technique that has gained popularity, dubbed "evolve and resequence," to measure the genetic ...
The eastern coastline of Mexico's Yucatan Peninsula, a mecca for tourists, may have been walloped by a tsunami between 1,500 and 900 years ago, says a new study involving Mexico's Centro Ecological Akumal (CEA) and the University of Colorado Boulder.
There are several lines of evidence for an ancient tsunami, foremost a large, wedge-shaped berm about 15 feet above sea level paved with washing machine-sized stones, said the researchers. Set back in places more than a quarter of a mile from shore, the berm stretches for at least 30 miles, alternating between rocky headlands ...
Recent research from the Long Life Family Study (LLFS) confirms that severe mortality-associated diseases are less prevalent in the families of long-lived individuals than in the general population. The Journals of Gerontology, Series A® will publish these findings in the article titled, "Are Members of Long-Lived Families Healthier than Their Equally Long-Lived Peers? Evidence from the Long Life Family Study" on March 5, 2015. The LLFS is an international collaborative study of the genetics and familial components of exceptional survival, longevity, and healthy aging.
Researchers ...
An extraordinary self-regulating heating effect that can be achieved in a particular type of magnetic material may open the doors to a new strategy for hyperthermia cancer treatment.
Temperatures that can be tolerated by healthy body cells have long been known to destroy cancerous cells. An approach that uses magnetic particles that are introduced into tissue and heated remotely has found some success in treating cancer, but the technique is still some way from becoming a standard procedure.
One of the problems hindering progress is the insufficient heating capacity ...
Our smartphones help us find a phone number quickly, provide us with instant directions and recommend restaurants, but new research indicates that this convenience at our fingertips is making it easy for us to avoid thinking for ourselves.
The study, from researchers at the University of Waterloo and published in the journal Computers in Human Behavior, suggests that smartphone users who are intuitive thinkers -- more prone to relying on gut feelings and instincts when making decisions -- frequently use their device's search engine rather than their own brainpower. Smartphones ...
Philadelphia, PA, March 5, 2015 - Antibodies defend the body against bacterial, viral, and other invaders. But sometimes the body makes antibodies that attack healthy cells. In these cases, autoimmune disorders develop.
Immune abnormalities in patients with psychosis have been recognized for over a century, but it has been only relatively recently that scientists have identified specific immune mechanisms that seem to directly produce symptoms of psychosis, including hallucinations and delusions.
This 'immune hypothesis' is supported by new work published by Pathmanandavel ...
By studying specially bred mice with specific developmental and cognitive traits resembling those seen in schizophrenia, UC San Francisco researchers have provided new evidence that abnormal rhythmic activity in particular brain cells contributes to problems with learning, attention, and decision-making in individuals with that disorder.
As reported in the March 5, 2015 online edition of Neuron, when the researchers corrected these cells' faulty rhythm, either by directly stimulating the cells or by administering low doses of a commonly used drug, cognitive deficits in ...
The molecular complex that guides an important class of proteins to correct locations in cell membranes does so by forming a dimeric structure with a protective pocket, report scientists from the University of Chicago in Science on Mar. 5. This structure shields tail-anchored membrane proteins - which have roles in a wide variety of cellular functions from neurotransmitter release to insulin production - from harmful aggregation or misfolding as they move through the inner environment of a cell. The findings clarify the mechanism behind a fundamental biological process.
"The ...