(Press-News.org) WORCESTER, MA - A new "app" for finding and mapping chromosomal loci using multicolored versions of CRISPR/Cas9, one of the hottest tools in biomedical research today, has been developed by scientists at the University of Massachusetts Medical School. This labeling system, details of which were published in PNAS and first presented at the American Society for Cell Biology/International Federation for Cell Biology annual meeting in Philadelphia in December, could be a key to understanding the spatial and temporal regulation of gene expression by allowing researchers to measure the precise linear distance between two known points on different chromosomes or two locations on the same chromosome in live human cells.
The nucleus of every cell in our bodies (with the exception of gametes and red blood cells) must pack into it 23 pairs of chromosomes, tight bundles of extremely long strands of DNA wound around protein knobs. For a gene to be transcribed and expressed, it must be accessible on the chromosome. Scientists have long suspected that the position of a chromosome within the nucleus affects gene accessibility and plays a critical role in everything from embryonic development to cancer.
Knowing the location and the intra-nuclear conformation of chromosomes is critical to understanding how genes actually work because the human cell nucleus is a very crowded place, according to study authors Thoru Pederson, PhD, professor of biochemistry and molecular pharmacology, and research specialist Hanhui Ma, PhD, at UMass Medical School.
By deploying pairs of fluorescent tags from their three-color system, Pederson and colleagues showed that it's possible to plot where a chromosome is inside the cell nucleus and where it is in relation to other chromosomes. Their CRISPR app can also measure the distance between two points on the same chromosome, giving a read-out of chromosome compaction, which is a key factor in gene expression.
Precisely locating chromosomes in the nucleus of living cells has been a holy grail in cell biology since 1968, when Joseph Gall and Mary Lou Pardue first demonstrated the detection of specific loci. That discovery helped open the era of genetic testing, but the early techniques required "fixed," i.e. dead, cells. In the intervening years, researchers have adapted new methods to probe live cells including transcription activator-like effectors (TALEs), which Ma and Pederson had recently introduced for lighting up genetic loci in living cells. But they subsequently came to believe that the rapidly emerging CRISPR system promised a more accurate map of a living nucleus and would be easier for scientists to employ.
Using their multicolored system, they were able to determine common locations for several chromosomes. Among their findings was that gene-rich chromosome 19 tends to be located in the middle of the nucleus, whereas gene-poor chromosome 18 is at the periphery. Also staying close to the center of the nucleus were chromosome 17 and five of the so-called acrocentric chromosomes, which have their distinctive centromeres close to the ends of one arm. One of the five acrocentrics is chromosome 21; the presence of an extra copy of chromosome 21 is called trisomy 21, and is the diagnostic marker for Down syndrome. Meanwhile, chromosomes 3 and 7 were at or close to the nuclear periphery.
The researchers were also able to distinguish the different locations for each diploid copy of the genes involved in organizing the nucleolus. The researchers say that they have plans to further tweak their two-color technique to study translocations--the abnormal switching of chromosomal segments--in human tumor cells.
Ultimately, the GPS app will provides scientists a new toolkit for "studying the 4D nucleome and the regulation of eukaryotic gene expression across a broad landscape of cell types and stages of development, differentiation and human disease," the authors state in their publication.
INFORMATION:
The published study was funded in part by the U.S. National Science Foundation.
About the University of Massachusetts Medical School
The University of Massachusetts Medical School (UMMS), one of five campuses of the University system, comprises the School of Medicine, the Graduate School of Biomedical Sciences, the Graduate School of Nursing, a thriving research enterprise and an innovative public service initiative, Commonwealth Medicine. Its mission is to advance the health of the people of the commonwealth through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care. In doing so, it has built a reputation as a world-class research institution and as a leader in primary care education. The Medical School attracts more than $240 million annually in research funding, placing it among the top 50 medical schools in the nation. In 2006, UMMS's Craig C. Mello, PhD, Howard Hughes Medical Institute Investigator and the Blais University Chair in Molecular Medicine, was awarded the Nobel Prize in Physiology or Medicine, along with colleague Andrew Z. Fire, PhD, of Stanford University, for their discoveries related to RNA interference (RNAi). The 2013 opening of the Albert Sherman Center ushered in a new era of biomedical research and education on campus. Designed to maximize collaboration across fields, the Sherman Center is home to scientists pursuing novel research in emerging scientific fields with the goal of translating new discoveries into innovative therapies for human diseases.
Television advertisements for e-cigarettes may be enticing current and even former tobacco smokers to reach for another cigarette.
That is the finding by researchers Erin K. Maloney, Ph.D. and Joseph N. Cappella, Ph.D. from the University of Pennsylvania's Annenberg School for Communication, as reported in the journal Health Communication (online, March 2015).
The researchers studied more than 800 daily, intermittent, and former smokers who watched e-cigarette advertising, and who then took a survey to determine smoking urges, intentions, and behaviors.
Using a standard ...
NASA's Hubble Space Telescope has the best evidence yet for an underground saltwater ocean on Ganymede, Jupiter's largest moon. The subterranean ocean is thought to have more water than all the water on Earth's surface.
Identifying liquid water is crucial in the search for habitable worlds beyond Earth and for the search of life as we know it.
"This discovery marks a significant milestone, highlighting what only Hubble can accomplish," said John Grunsfeld, associate administrator of NASA's Science Mission Directorate at NASA Headquarters, Washington. "In its 25 years ...
CHICAGO --- A father's depression during the first years of parenting - as well as a mother's - can put their toddler at risk of developing troubling behaviors such as hitting, lying, anxiety and sadness during a critical time of development, according to a new Northwestern Medicine study.
This is one of the first studies to show that the impact of a father's depression from postpartum to toddlerhood is the same as a mother's. Previous studies have focused mostly on mothers with postpartum depression and found that their symptoms may impact their children's behavior during ...
Unique proteins newly discovered in heat-loving bacteria are more than capable of attaching themselves to plant cellulose, possibly paving the way for more efficient methods of converting plant matter into biofuels.
The unusual proteins, called tapirins (derived from the Maori verb 'to join'), bind tightly to cellulose, a key structural component of plant cell walls, enabling these bacteria to break down cellulose. The conversion of cellulose to liquid biofuels, such as ethanol, is paramount to the use of renewable feedstocks.
In a paper published online in the Journal ...
WINSTON-SALEM, N.C. - March 12, 2015 - A recently developed risk-evaluation protocol can help hospital emergency department personnel more efficiently determine which patients with acute chest pain can be sent home safely, according to a randomized trial conducted at Wake Forest Baptist Medical Center.
The study, published in the current online issue of the American Heart Association journal Circulation: Cardiovascular Quality and Outcomes, found that chest-pain patients who were evaluated with the new protocol, called the HEART Pathway, had 12 percent fewer cardiac tests, ...
The Brazilian Navy Hydrographic Centre reported that a sub-tropical storm had formed on March 11 near east of the Brazilian state of Rio Grande do Sul, the southeastern most state in Brazil.
NOAA's GOES-East satellite provided imagery of the Atlantic that showed Subtropical Cyclone 90Q off the southeastern coast of Brazil at 17:45 UTC (1:45 p.m. EDT). The system appeared to have fragmented banding of thunderstorms around the low-level center. The image was created by NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Maryland.
At 1200 UTC (8 ...
For more than 100 years, marine biologists at Friday Harbor Laboratories have studied the ecology of everything from tiny marine plants to giant sea stars.
Now, as the oceans are undergoing a historic shift in chemistry, the lab is establishing itself as a place to study what that will mean for marine life. And the University of Washington laboratory is uniquely placed in naturally acidic waters that may be some of the first pushed over the edge by human-generated carbon emissions.
A paper published last month in Limnology and Oceanography tracks about two years of ...
Case Western Reserve scientists have discovered that speed matters when it comes to how messenger RNA (mRNA) deciphers critical information within the genetic code -- the complex chain of instructions critical to sustaining life. The investigators' findings, which appear in the March 12 journal Cell, give scientists critical new information in determining how best to engage cells to treat illness -- and, ultimately, keep them from emerging in the first place.
"Our discovery is that the genetic code is more complex than we knew," said senior researcher Jeff Coller, PhD, ...
CHAMPAIGN, Ill. -- A new molecule-making machine could do for chemistry what 3-D printing did for engineering: Make it fast, flexible and accessible to anyone.
Chemists at the University of Illinois, led by chemistry professor and medical doctor Martin D. Burke, built the machine to assemble complex small molecules at the click of a mouse, like a 3-D printer at the molecular level. The automated process has the potential to greatly speed up and enable new drug development and other technologies that rely on small molecules.
"We wanted to take a very complex process, ...
A new study finds that Interleukin-3 (IL-3), an inflammatory factor most associated with allergic reactions, appears to have an important role in the overwhelming, life-threatening immune reaction called sepsis. In the March 13 issue of Science, investigators from Massachusetts General Hospital (MGH) describe finding that the presence of IL-3 is essential to the development of sepsis in a mouse model of the condition and that IL-3 levels in human patients with sepsis are higher in those at greater risk of dying.
"Sepsis is an extremely dangerous conditions that claims ...