(Press-News.org) In the face of global climate change, increasing the use of renewable energy resources is one of the most urgent challenges facing the world. Further development of one resource, solar energy, is complicated by the need to find space for solar power-generating equipment without significantly altering the surrounding environment.
New work from Carnegie's Rebecca R. Hernandez (now at University of California Berkley), Madison K. Hoffacker, and Chris Field found that the amount of energy that could be generated from solar equipment constructed on and around existing infrastructure in California would exceed the state's demand by up to five times. It is published by Nature Climate Change.
"Integrating solar facilities into the urban and suburban environment causes the least amount of land-cover change and the lowest environmental impact," Hernandez explained.
Just over 8 percent of all of the terrestrial surfaces in California have been developed by humans--from cities and buildings to park spaces. Residential and commercial rooftops present plenty of opportunity for power generation through small- and utility-scale solar power installations. Other compatible opportunities are available in open urban spaces such as parks.
Likewise, there is opportunity for additional solar construction in undeveloped sites that are not ecologically sensitive or federally protected, such as degraded lands.
"Because of the value of locating solar power-generating operations near roads and existing transmission lines, our tool identifies potentially compatible sites that are not remote, showing that installations do not necessarily have to be located in deserts," Hernandez said.
This study included two kinds of solar technologies, photovoltaics, which use semiconductors and are similar to the solar panels found in consumer electronics, and concentrating solar power, which uses enormous curved mirrors to focus the sun's rays. A mix of both options would be possible, as best suits each particular area of installation, whether it is on a rooftop, in a park, on degraded lands, or anywhere else deemed compatible or potentially compatible. They found that small- and utility-scale solar power could generate up to 15,000 terawatt-hours of energy per year using photovoltaic technology and 6,000 terrawatt-hours of energy per year using concentrating solar power technology.
Overall the team found that California has about 6.7 million acres (27, 286 square kilometers) of land that is compatible for photovoltaic solar construction and about 1.6 million acres (6,274 square kilometers) compatible for concentrating solar power. There is also an additional 13.8 million acres (55,733 square kilometers) that is potentially compatible for photovoltaic solar energy development with minimal environmental impact and 6.7 million acres (27,215 square kilometers) also potentially compatible for concentrating solar power development.
The team's work shows it is possible to substantially increase the fraction of California's energy needs met by solar, without converting natural habitat and causing adverse environmental impact and without moving solar installations to locations remote from the consumers.
"As California works to meet requirements that 33 percent of retail electricity be provided by renewable sources by 2020 and that greenhouse-gas emissions be 80 percent below 1990 levels by 2050, our research can help policymakers, developers, and energy stakeholders make informed decisions," said Field, director of Carnegie's Department of Global Ecology. "Furthermore, our findings have implications for other states and countries with similarly precious environmental resources and infrastructural constraints."
INFORMATION:
This work was supported by The McGee Research Grant of the Stanford's School of Earth Sciences, the TomKat Center for Sustainable Energy, the Jean Langenheim Research Fellowship of Graduate Women in Science Society, the Hispanic Scholarship's Fund's William Randolph Hearst Fund Scholarship, and the Vice Provost Office of Graduate Education's Diversifying Academia Recruiting Excellence Program.
The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.
Northwestern University scientists have developed a robust new material, inspired by biological catalysts, that is extraordinarily effective at destroying toxic nerve agents that are a threat around the globe. First used 100 years ago during World War I, deadly chemical weapons continue to be a challenge to combat.
The material, a zirconium-based metal-organic framework (MOF), degrades in minutes one of the most toxic chemical agents known to mankind: Soman (GD), a more toxic relative of sarin. Computer simulations show the MOF should be effective against other easy-to-make ...
"Warmer air transports more moisture and hence produces more precipitation - in cold Antarctica this takes the form of snowfall," lead author Katja Frieler from the Potsdam Institute for Climate Impact Research (PIK) explains. "We have now pulled a number of various lines of evidence together and find a very consistent result: Temperature increase means more snowfall on Antarctica," says Frieler. "For every degree of regional warming, snowfall increases by about 5 percent." Published in the journal Nature Climate Change, the scientists' work builds on high-quality ice-core ...
Researchers have discovered a valley underneath East Antarctica's most rapidly-changing glacier that delivers warm water to the base of the ice, causing significant melting.
The intrusion of warm ocean water is accelerating melting and thinning of Totten Glacier, which at 65 kilometres long and 30 kilometres wide contains enough ice to raise global sea levels by 3.5 metres. The glacier is one of the major outlets for the East Antarctic Ice Sheet, which is the largest mass of ice on Earth and covers 98 percent of the continent.
Climate change is raising the temperature ...
CORVALLIS, Ore. - A new study confirms that snowfall in Antarctica will increase significantly as the planet warms, offsetting future sea level rise from other sources - but the effect will not be nearly as strong as many scientists previously anticipated because of other, physical processes.
That means that many computer models may be underestimating the amount and rate of sea level rise if they had projected more significant impact from Antarctic snow.
Results of the study, which was funded by the National Science Foundation, were reported this week in the journal ...
About one quarter of the global seafloor is extremely nutrient poor. Contrary to previous assumptions, it contains oxygen not just in the thin surface layer, but also throughout its entire thickness. The underlying basement rocks contain oxygen as well. An international research team made these new discoveries through analysis of drill cores from the South Pacific Gyre.
In the latest issue of Nature Geoscience the scientists also point out the potential effects on the composition of Earth's interior because oxygen-containing deep-sea sediment has a different mineral composition ...
The underlying mechanism behind an enigmatic process called "singlet exciton fission", which could enable the development of significantly more powerful solar cells, has been identified by scientists in a new study.
The process is only known to happen in certain materials, and occurs when they absorb light. As the light particles come into contact with electrons within the material, the electrons are excited by the light, and the resulting "excited state" splits into two.
If singlet exciton fission can be controlled and incorporated into solar cells, it has the potential ...
Climbing rats, seabirds and tropical gophers are among the 15 animal species that are at the absolute greatest risk of becoming extinct very soon. Expertise and money is needed to save them and other highly threatened species.
A new study shows that a subset of highly threatened species - in this case 841 - can be saved from extinction for about $1.3 billion a year. However, for 15 of them the chances of conservation success are really low.
The study published in Current Biology concludes that a subset of 841 endangered animal species can be saved, but only if conservation ...
New heart imaging technology to diagnose coronary heart disease and other heart disorders is significantly more accurate, less expensive and safer than traditional methods, according to a new study by researchers from the Intermountain Medical Center Heart Institute in Salt Lake City.
Researchers at the Intermountain Medical Center Heart Institute compared Single Photon Emission Computed Tomography (SPECT), currently the most commonly used imaging diagnostic tool, with a new imaging technology -- coronary-specific Positron Emission Tomography (cardiac PET/CT).
They ...
Montreal, March 16, 2015 -- Does a predilection for porn mean bad news in bed? That's the conclusion of many clinicians and the upshot of anecdotal reports claiming a man's habit of viewing sex films can lead to problems getting or sustaining an erection.
But a new study from UCLA and Concordia University -- the first to actually test the relationship between how much erotica men are watching and erectile function -- shows that viewing sexual films is unlikely to cause erectile problems and may even help sexual arousal.
The study, published in the online journal Sexual ...
This news release is available in German.
The lithium ion battery currently is the most widespread battery technology. It is indispensable for devices, such as laptops, mobile phones or cameras. Current research activities are aimed at reaching higher lithium storage densities in order to increase the amount of energy stored in a battery. Moreover, lithium storage should be quick for energy supply of devices with high power requirements. This requires the detailed understanding of the electrochemical processes and new development of battery components.
The materials ...