(Press-News.org) By genomic sequencing of leukemia cells from relapsed patients at different stages, scientists have discovered key details of how acute lymphoblastic leukemia (ALL) cells mutate to survive chemotherapy. These mutations enable the cells to proliferate, causing relapse and often death.
The findings are important because ALL is a leading cause of cancer deaths in children, with 15 percent of ALL patients relapsing with poor survival. The researchers said their findings will lead to new tests to monitor children in remission and to detect signs of relapse.
The research was published in the March 19 issue of the journal Nature Communications. Leading the research team were corresponding authors Charles Mullighan, M.D., MBBS(Hons), a member of the St. Jude Children's Research Hospital Department of Pathology; Jinghui Zhang, Ph.D., a member of the St. Jude Department of Computational Biology; and Stephen Hunger, M.D., director of the Center for Childhood Cancer Research at The Children's Hospital of Philadelphia.
In their study, the researchers analyzed the genomes of cells from 20 children who had ALL that returned following treatment. Importantly, the researchers analyzed cell samples taken at three stages--diagnosis, remission and relapse.
Thus, the scientists could analyze in detail the genomes of the cells at the different stages, determining the mutations that drove the relapse of leukemia. Cancers such as leukemia are not a homogeneous disease. Rather they are a witch's brew of different dividing cancer cells, called "clones," with distinctive sets of mutations. While chemotherapy might kill almost all the clones, some might have escaped therapy, leaving them to multiply to cause relapse.
"In our study we wanted to find out the underlying mechanism leading to cancer relapse," Zhang said. "When the cancer recurs, is it a completely different cancer, or is it an extension, or change, arising from pre-existing cancer?"
New genomic analytical technologies enabled the scientists to detect with great sensitivity the mutations in both the "rising" and "falling" clones at the different stages. Previous studies have attempted to work backward by genomically analyzing the relapsed clone to try to trace back its origin. However, such analysis would miss the low levels of the cells that, at diagnosis, would ultimately cause relapse.
The researchers' genomic analysis of the cancer clonal cells pinpointed the mutations that drove the leukemia. They also characterized how diverse those mutations were at both diagnosis and relapse--finding that the cancer cells were mutating just as wildly and diversely throughout the cancer process.
"This finding was interesting, because most people think that the clone that has the most mutations is more likely to survive therapy and evolve, but that doesn't seem to be the case," Zhang said.
A key finding was that in most cases relapse of the cancer was driven by a minor clone, or "subclone," present at an extremely low level, that survived therapy. This finding has implications for genomic analysis of ALL after a patient's treatment, to determine the likelihood of relapse.
"When we are analyzing for the level of minimum residual disease in monitoring remission in patients, we should not only pay attention to the mutations in the predominant clone," said Zhang. "We should also be tracking what kinds of mutations exist in the minor subclones."
In their analysis, the researchers identified seven specific genes that were highly likely to be mutated in relapsed disease. Researchers at St. Jude and elsewhere are currently exploring the biological functions of the relapse-related genes, and the results may aid in developing ways to identify drugs to target their function.
More broadly, the methodology of highly sensitive genomic analysis of cancer cells that Zhang and her colleagues developed can be applied to explore the evolution of other cancers.
INFORMATION:
The first author of the study was Xiaotu Ma, Ph.D., of St. Jude Computational Biology. The other authors are Michael Edmonson, Donald Yergeau, Michael Rusch, Guangchun Song, John Easton, Jing Ma, Bhavin Vadodaria, Gang Wu, Mary Relling and James R. Downing, all of St. Jude; Panduka Nagahawatte, formerly of St. Jude; Donna Muzny, Oliver Hampton, David Wheeler and HarshaVardhan Doddapaneni, all of Baylor College of Medicine, Houston; Richard Harvey, I-Ming Chen and Cheryl Willman, all of University of New Mexico, Albuquerque; William Carroll, of New York University; Julie Gastier-Foster, of Nationwide Children's Hospital and Ohio State University College of Medicine, Columbus; Malcolm Smith, Jaime Guidry Auvil and Daniela Gerhard, all of the National Cancer Institute (NCI), Bethesda, MD; Meenakshi Devidas, of the University of Florida, Gainesville; and Mignon Loh, of the University of California, San Francisco.
The research was a collaborative project of the St. Jude Children's Research Hospital - Washington University Pediatric Cancer Genome Project, the Children's Oncology Group and the NCI's Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative.
The research was funded in part by the Pediatric Cancer Genome Project, including Kay Jewelers, a lead sponsor; grants (CA98543, CA21765, CA98413, CA114766) from the NCI at the National Institutes of Health; a contract (N261200800001E) from NCI; the St. Baldrick's Foundation and ALSAC.
Without better local management, the world's most iconic ecosystems are at risk of collapse under climate change, say researchers in Science. Protecting places of global environmental importance such as the Great Barrier Reef and the Amazon rainforest from climate change will require reducing the other pressures they face, for example overfishing, fertilizer pollution or land clearing.
The international team of researchers warns that localized issues, such as declining water quality from nutrient pollution or deforestation, can exacerbate the effects of climatic extremes, ...
March 19, 2015--(Bronx, NY)--Scientists at Albert Einstein College of Medicine of Yeshiva University and their international collaborators have developed a novel fluorescence microscopy technique that for the first time shows where and when proteins are produced. The technique allows researchers to directly observe individual messenger RNA molecules (mRNAs) as they are translated into proteins in living cells. The technique, carried out in living human cells and fruit flies, should help reveal how irregularities in protein synthesis contribute to developmental abnormalities ...
Prosthetics with a realistic sense of touch. Bridges that detect and repair their own damage. Vehicles with camouflaging capabilities.
Advances in materials science, distributed algorithms and manufacturing processes are bringing all of these things closer to reality every day, says a review published today in the journal Science by Nikolaus Correll, assistant professor of computer science, and research assistant Michael McEvoy, both of the University of Colorado Boulder.
The "robotic materials" being developed by Correll Lab and others are often inspired by nature, ...
Biologists at the University of California, San Diego have developed a new method for generating mutations in both copies of a gene in a single generation that could rapidly accelerate genetic research on diverse species and provide scientists with a powerful new tool to control insect borne diseases such as malaria as well as animal and plant pests.
Their achievement was published today in an advance online paper in the journal Science. It was accomplished by two biologists at UC San Diego working on the fruit fly Drosophila melanogaster who employed a new genomic technology ...
Berkeley -- Scientists at the University of California, Berkeley, have identified a new molecular pathway critical to aging, and confirmed that the process can be manipulated to help make old blood like new again.
The researchers found that blood stem cells' ability to repair damage caused by inappropriate protein folding in the mitochondria, a cell's energy station, is critical to their survival and regenerative capacity.
The discovery, to be published in the March 20 issue of the journal Science, has implications for research on reversing the signs of aging, a process ...
Without better local management, the world's most iconic ecosystems are at risk of collapse under climate change, say researchers in a study published in the journal Science.
The international team of researchers say protecting places of global environmental importance such as the Great Barrier Reef and the Amazon rainforest from climate change requires reducing the other pressures they face, for example overfishing, fertilizer pollution or land clearing.
The researchers warn that localised issues, such as declining water quality from nutrient pollution or deforestation, ...
The 2014 chemistry Nobel Prize recognized important microscopy research that enabled greatly improved spatial resolution. This innovation, resulting in nanometer resolution, was made possible by making the source (the emitter) of the illumination quite small and by moving it quite close to the object being imaged. One problem with this approach is that in such proximity, the emitter and object can interact with each other, blurring the resulting image. Now, a new JQI study has shown how to sharpen nanoscale microscopy (nanoscopy) even more by better locating the exact ...
Sifting through the center of the Milky Way galaxy, astronomers have made the first direct observations - using an infrared telescope aboard a modified Boeing 747 - of cosmic building-block dust resulting from an ancient supernova.
"Dust itself is very important because it's the stuff that forms stars and planets, like the sun and Earth, respectively, so to know where it comes from is an important question," said lead author Ryan Lau, Cornell postdoctoral associate for astronomy, in research published March 19 in Science Express. "Our work strongly reinforces the theory ...
Researchers from Banner Alzheimer's Institute (BAI) have developed a new brain image analysis method to better track the progression of beta-amyloid plaque deposition, a characteristic brain abnormality in Alzheimer's disease, according to a study published in the March issue of the Journal of Nuclear Medicine. Investigators also believe this new approach may make it easier to evaluate investigational anti-amyloid treatments in clinical trials.
During the last decade, researchers have been using positron emission topography (PET) to assess amyloid plaque deposition in ...
A psychology study from The University of Texas at Austin sheds new light on today's standards of beauty, attributing modern men's preferences for women with a curvy backside to prehistoric influences.
The study, published online in Evolution and Human Behavior, investigated men's mate preference for women with a "theoretically optimal angle of lumbar curvature," a 45.5 degree curve from back to buttocks allowing ancestral women to better support, provide for, and carry out multiple pregnancies.
"What's fascinating about this research is that it is yet another scientific ...