(Press-News.org) DURHAM, N.C. - Repeated alcohol exposure during adolescence results in long-lasting changes in the region of the brain that controls learning and memory, according to a research team at Duke Medicine that used a rodent model as a surrogate for humans.
The study, published April 27 in the journal Alcoholism: Clinical & Experimental Research, provides new insights at the cellular level for how alcohol exposure during adolescence, before the brain is fully developed, can result in cellular and synaptic abnormalities that have enduring, detrimental effects on behavior.
"In the eyes of the law, once people reach the age of 18, they are considered adult, but the brain continues to mature and refine all the way into the mid-20s," said lead author Mary-Louise Risher, Ph.D., a post-doctoral researcher in the Duke Department of Psychiatry and Behavioral Sciences. "It's important for young people to know that when they drink heavily during this period of development, there could be changes occurring that have a lasting impact on memory and other cognitive functions."
Risher and colleagues, including senior author Scott Swartzwelder, Ph.D., a professor of Psychiatry and Behavioral Sciences at Duke and Senior Research Career Scientist at the Durham VA Medical Center, periodically exposed young rodents to a level of alcohol during adolescence that, in humans, would result in impairment, but not sedation. Afterward, these animals received no further exposure to alcohol, and grew into adulthood - which in rats occurred within 24 to 29 days.
Earlier studies by the Duke team and others have shown that adolescent animals exposed to alcohol grow into adults that are much less adept at memory tasks than normal animals - even with no further alcohol exposure.
What has not been known is how these impairments manifest at the cellular level in the region of the brain known as the hippocampus, where memory and learning are controlled.
Using small electrical stimuli applied to the hippocampus, the Duke team measured a cellular mechanism called long-term potentiation, or LTP, which is the strengthening of brain synapses as they are used to learn new tasks or conjure memories.
Learning occurs best when this synaptic activity is vigorous enough to build strong signal transmissions between neurons. LTP is highest in the young, and effective learning is crucial for adolescents to acquire large amounts of new memory during the transition to adulthood.
The researchers expected they would find abnormally diminished LTP in the adult rats that had been exposed to alcohol during their adolescence. Surprisingly, however, LTP was actually hyperactive in these animals compared to the unexposed rodents.
"At first blush, you would think the animals would be smarter," Swartzwelder said. "But that's the opposite of what we found. And it actually does make sense, because if you produce too much LTP in one of these circuits, there is a period of time where you can't produce any more. The circuit is saturated, and the animal stops learning. For learning to be efficient, your brain needs a delicate balance of excitation and inhibition - too much in either direction and the circuits do not work optimally."
Importantly, the LTP abnormality was accompanied by a structural change in individual nerve cells that Swartzwelder, Risher and colleagues identified. The tiny protrusions from the branches of the cells, called dendritic spines, had appeared lanky and spindly, suggesting immaturity. Mature spines are shorter and look a bit like mushrooms, refining cell-to-cell communication.
"Something happens during adolescent alcohol exposure that changes the way the hippocampus and other regions of the brain function and how the cells actually look - both the LTP and the dendritic spines have an immature appearance in adulthood," Swartzwelder said.
Risher said this immature quality of the brain cells might be associated with behavioral immaturity. In addition to spine changes in the hippocampus, which affects learning, colleagues of the Duke group have shown structural changes in other brain regions that control impulsiveness and emotionality.
"It's quite possible that alcohol disrupts the maturation process, which can affect these cognitive function later on," she said. "That's something we are eager to explore in ongoing studies."
The researchers said additional studies would focus on the longer-term cognitive effects of alcohol on brains, along with additional cellular changes.
INFORMATION:
In addition to Risher and Swartzwelder, study authors include Rebekah Lyn Fleming; W. Christopher Risher; Kelsey Miller; Rebecca Klein; Tiffany Wills; Shawn K. Acheson; Scott D. Moore; Wilkie A. Wilson; and Cagla Eroglu.
The research team is part of the Neurobiology of Adolescent Drinking in Adulthood (NADIA) consortium, which studies the effects of adolescent alcohol exposure https://www.med.unc.edu/alcohol/nadiaconsortium). The National Institute of Alcohol Abuse and Alcoholism provided funding (U01AA019925; UO1AA020938; BX-001271-02; DA031833; 2T32NS51156-6 and 1F32NS083283-01A1), along with the U.S. Department of Veterans Affairs and the Institute for Medical Research. A full list of funding sources is provided in the published study.
April 27, 2015--Researchers at Columbia University's Mailman School of Public Health looked at the frequency of nonmedical prescription opioid use and the risk of heroin-related behaviors and found that past-year heroin use rose among individuals taking opioids like oxycontin and these increases varied by race and ethnicity. The most significant rise in heroin use was among Hispanics and non-Hispanic whites, where the rate of heroin use for the latter group increased by 75 percent in 2008-2011 compared to earlier years. Findings are online in the journal Drug and Alcohol ...
Determining whether your snoring is merely annoying, or crosses the threshold into a life-threatening problem, isn't convenient or cheap.
The gold standard for diagnosing sleep apnea -- a disease which affects roughly 1 in 13 Americans -- requires an overnight hospital stay and costs thousands of dollars. The patient sleeps in a strange bed, gets hooked up to a tangle of wires, and undergoes an intensive polysomnography test to count how many times a night he or she struggles to breathe.
By contrast, a new app developed at the University of Washington uses a smartphone ...
EUGENE, Ore. -- (April 27, 2015) -- Two wrongs can make a right, at least in the world of visual perception and motor functioning, according to two University of Oregon brain scientists.
In a two-experiment study, published last month in the journal Frontiers in Human Neuroscience, UO neuroscientists Paul Dassonville and Scott A. Reed used eye-tracker technology in a dark laboratory to test a developing theory about how the brain determines the locations of nearby objects.
In a test of perception, 20 students were asked to report whether a line was tilted left or right ...
BOSTON - Anyone who has ever tried to lose weight knows that it's no fun to feel hungry. In fact, the drive to tame gnawing hunger pangs can sabotage even the best-intentioned dieter. But how exactly is it that fasting creates these uncomfortable feelings - and consuming food takes them away?
Working to unravel the complex wiring system that underlies this intense physiological state, investigators at Beth Israel Deaconess Medical Center (BIDMC) and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), part of the National Institutes of Health ...
Although closely related to the notorious carnivore Tyrannosaurus rex, a new lineage of dinosaur discovered in Chile is proving to be an evolutionary jigsaw puzzle, as it preferred to graze upon plants.
Palaeontologists are referring to Chilesaurus diegosuarezi as a 'platypus' dinosaur because of its extremely bizarre combination of characters that include a proportionally small skull and feet more akin to primitive long-neck dinosaurs.
Chilesaurus diegosuarezi is nested within the theropod group of dinosaurs, the dinosaurian group that gathers the famous meat eaters ...
If you're finding it difficult to stick to a weight-loss diet, scientists at the Howard Hughes Medical Institute's Janelia Research Campus say you can likely blame hunger-sensitive cells in your brain known as AGRP neurons. According to new experiments, these neurons are responsible for the unpleasant feelings of hunger that make snacking irresistible.
The negative emotions associated with hunger can make it hard to maintain a diet and lose weight, and these neurons help explain that struggle, says Scott Sternson, a group leader at Janelia. In an environment where food ...
Johns Hopkins scientists have discovered that neurons are risk takers: They use minor "DNA surgeries" to toggle their activity levels all day, every day. Since these activity levels are important in learning, memory and brain disorders, the researchers think their finding will shed light on a range of important questions. A summary of the study will be published online in the journal Nature Neuroscience on April 27.
"We used to think that once a cell reaches full maturation, its DNA is totally stable, including the molecular tags attached to it to control its genes and ...
Eating 3,000 mg per day of salt or more appears to have no adverse effect on blood pressure in adolescent girls, while those girls who consumed 2,400 mg per day or more of potassium had lower blood pressure at the end of adolescence, according to an article published online by JAMA Pediatrics.
The scientific community has historically believed most people in the United States consume too much salt in their diets. The current Dietary Guidelines for Americans recommends limiting sodium intake to less than 2,300 mg per day for healthy individuals between the ages of 2 and ...
Survivors of Hodgkin lymphoma appear to be at higher risk for cardiovascular diseases and both physicians and patients need to be aware of this increased risk, according to an article published online by JAMA Internal Medicine.
Hodgkin lymphoma (HL) is a curable cancer with 10-year survival rates exceeding 80 percent. Treatment for HL has been associated with increased risks for other cancers and cardiovascular diseases, and those later cardiovascular complications may be the consequence of radiotherapy and chemotherapy in HL treatment, according to the study background.
Flora ...
Researchers have developed a large-scale sequencing technique called Genome and Transcriptome Sequencing (G&T-seq) that reveals, simultaneously, the unique genome sequence of a single cell and the activity of genes within that single cell.
The study, published today in Nature Methods, has experimentally established for the first time that when a cell loses or gains a copy of a chromosome during cell division, the genes in that particular region of DNA show decreased or increased expression. While this has long been assumed by genetic researchers, it has not been seen ...