Inspired by the eight arms of the octopus, the device has been specifically designed for surgical operations to enable surgeons to easily access remote, confined regions of the body and, once there, manipulate soft organs without damaging them.
It is believed the device could reduce the number of instruments, and thus entry incisions, necessary in surgical operations, with part of the arm being used to manipulate organs whilst another part of the arm operates.
The device, which has been presented today, Thursday 14 May, in IOP Publishing's journal Bioinspiration and Biomimetics, holds a key advantage over traditional surgical tools due to its ability to quickly transform from a bending, flexible instrument into a stiff and rigid instrument.
It has been inspired by the eight highly flexible arms of the octopus which have no rigid skeletal support and can thus easily adapt to the surrounding environment by twisting, changing their length or bending in any direction at any point along the arm.
The octopus can, however, vary the stiffness of its arms, temporarily transforming the flexible limbs into stiffened segments to allow the octopus to move and interact with objects.
To achieve the same effect in the robotic arm, the researchers, from the Sant'Anna School of Advanced Studies in Italy, constructed a device that was made from two interconnecting identical modules.
Each module could be made to move by the inflation of three cylindrical chambers that were equally spaced inside the module. By alternating and combining the inflation of the three chambers, the module could be made to bend and stretch in various directions.
The stiffness of the two modules could also be controlled by exploiting a 'granular jamming phenomenon' in which a flexible membrane inside the module is filled with a granular media. When a vacuum is applied to the membrane, its density increases and the whole membrane becomes rigid.
Lead author of the study Dr Tommaso Ranzani said: 'The human body represents a highly challenging and non-structured environment, where the capabilities of the octopus can provide several advantages with respect to traditional surgical tools.
'Generally, the octopus has no rigid structures and can thus adapt the shape of its body to its environment. Taking advantage of the lack of rigid skeletal support, the eight highly flexible and long arms can twist, change their length, or bend in any direction at any point along the arm.'
In their study, the researchers performed a number of characterization tests on the robotic device, showing that it could bend to angles of up to 255° and stretch to up to 62% of its initial length. The stiffening mechanism was able to provide stiffness increases from 60% up to 200%.
The ability of the robotic arm to manipulate organs while surgical tasks are performed was successfully demonstrated in simulated scenarios where organs were represented by water-filled balloons.
'Traditional surgical tasks often require the use of multiple specialized instruments such as graspers, retractors, vision systems and dissectors, to carry out a single procedure,' Dr Ranzani continued.
'We believe our device is the first step to creating an instrument that is able to perform all of these tasks, as well as reach remote areas of the body and safely support organs around the target site.'
INFORMATION:
From Thursday 14 May, this paper can be downloaded from http://iopscience.iop.org/1748-3190/10/3/035008.
Notes to Editors
Contact
1. For further information, a full draft of the journal paper or contact with one of the researchers, contact IOP Senior PR Officer, Alison Hadley: Tel: 0117 930 1176 E-mail: alison.hadley@iop.org . For more information on how to use the embargoed material above, please refer to our embargo policy.
IOP Publishing Journalist Area
2. The IOP Publishing Journalist Area (http://journalists.iop.org/journalistLogin) gives journalists access to embargoed press releases, advanced copies of papers, supplementary images and videos. In addition to this, a weekly news digest is uploaded into the Journalist Area every Friday, highlighting a selection of newsworthy papers set to be published in the following week. Login details also give free access to IOPscience, IOP Publishing's journal platform. To apply for a free subscription to this service, please email the IOP Publishing Press team at ioppublishing.press@iop.org, with your name, organisation, address and a preferred username.
A bioinspired soft manipulator for minimally invasive surgery
3. The published version of the paper 'A bioinspired soft manipulator for minimally invasive surgery' (Bioinspiration Biomimetics 10 035008) will be freely available online from Thursday 14 May. It will be available at http://iopscience.iop.org/1748-3190/10/3/035008.
Bioinspiration and Biomimetics
4. Bioinspiration and Biomimetics publishes research that applies principles abstracted from natural systems to engineering and technological design and applications.
IOP Publishing
5. IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide.
Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of books, community websites, magazines, conference proceedings and a multitude of electronic services.
IOP Publishing is central to the Institute of Physics, a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of the Institute.
Go to ioppublishing.org or follow us @IOPPublishing.
Access to Research
6. Access to Research is an initiative through which the UK public can gain free, walk-in access to a wide range of academic articles and research at their local library. This article is freely available through this initiative. For more information, go to http://www.accesstoresearch.org.uk.
The Institute of Physics
6. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.
We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.
In September 2013, we launched our first fundraising campaign. Our campaign, Opportunity Physics, offers you the chance to support the work that we do.
Visit us at http://www.iop.org or follow us on Twitter @physicsnews.