(Press-News.org) Each summer, Greenland's ice sheet -- the world's second-largest expanse of ice, measuring three times the size of Texas -- begins to melt. Pockets of melting ice form hundreds of large, 'supraglacial' lakes on the surface of the ice. Many of these lakes drain through cracks and crevasses in the ice sheet, creating a liquid layer over which massive chunks of ice can slide. This natural conveyor belt can speed ice toward the coast, where it eventually falls off into the sea.
In recent years, scientists have observed more lakes forming toward the center of the ice sheet -- a region that had been previously too cold to melt enough ice for lakes to form. The expanding range of lakes has led scientists to wonder whether Greenland will ultimately raise global sea levels higher than previously predicted.
Now researchers at MIT, Woods Hole Oceanographic Institution (WHOI), and elsewhere have found that while warming temperatures are creating more inland lakes, these lakes cannot drain their water locally, as lakes along the coast do, and are not likely to change the amount of water reaching the ground in inland regions.
'It's essentially a check on the inner ice starting to move along this fast conveyor belt,' says Laura Stevens, a graduate student in MIT's Department of Earth, Atmospheric and Planetary Sciences. 'One of the big questions about the Greenland ice sheet is how much of the ice sheet [travels towards the coast] during the summer, and how much is entering into the ocean. Our hypothesis that inland lakes are less likely to drain locally suggests the ice sheet in that region won't speed up. That's good news, at least for the time being.'
Stevens and her colleagues, including Thomas Herring, a professor of geophysics at MIT, have published their results today in the journal Nature.
A trickle and a trigger
In summer 2006, Sarah Das, a glaciologist at WHOI, led a team to document the drainage of North Lake, a 10-meter-deep, 2-kilometer-wide lake on the western side of Greenland. The group observed that each summer, the lake, like many others, drained quickly, completely emptying in just a couple of hours.
'You can hear the water rushing down in the distance, and even if you're a couple kilometers away, you see all these microcracks running along the ground around you,' Stevens says.
The researchers set up one GPS station near the lake to record the surface of the ice during its draining, and later identified a large fracture in the basin through which the water drained. However, it wasn't clear what triggered the fracture that caused the lake to drain so quickly.
Das returned to Greenland in summer 2011, along with Stevens and others, to get a more detailed picture of the lake's seasonal draining. The team set up 16 GPS stations in two rings around the lake, and recorded the movement of the ice as the lake drained once each summer over three consecutive summers.
From the GPS data, they observed a period of six to 12 hours, just before the lake drained, in which some water from the lake trickled to the bottom of the ice sheet through 'moulins' -- narrow vertical channels in the ice. During this brief period, the researchers observed water collecting at the bottom of the ice sheet, pushing up on the surface ice. This initial pooling of water seemed to trigger the rest of the lake to drain.
'That water will cause the ice above it to be jacked up like a dome, and then you've created tension at the surface that allows the ice sheet to start to fracture,' Stevens says. 'Once a fracture gets beneath the lake, then water just starts to pour into that fracture, and the whole thing goes.'
A check on runaway lake drainage
North Lake is located within the coastal region of Greenland, where the ice sheet is thinner, and more moulins route water at the surface of the ice sheet to its base. In contrast, lakes further inland are higher in elevation and form over thicker ice. Stevens says it's unlikely that inland lakes would drain, as there are fewer moulins near inland lakes, which prevents water from getting to the ground locally. Without these trigger channels, larger fractures would not form in the lake basin, and lakes would stay intact, simply refreezing in the winter or overflowing into a surface stream.
'It is critical to understand how and why these lakes drain in order to predict how much mass the ice sheet will contribute to sea-level rise in our warming climate,' Stevens says. 'We find that while lakes are forming inland, they probably won't drain by this...mechanism. The inland lakes will more likely drain their water via surface stream runoff, which transfers the water to the bed in more coastal areas of the ice sheet. So, while we see inland ice beginning to speed up as more melt happens inland, the draining of inland lakes likely won't exacerbate the situation.'
INFORMATION:
This research was funded in part by the National Science Foundation and NASA.
Related links
Archive: Ocean currents play a role in predicting extent of Arctic sea ice
Archive: Solving the polar climate conundrum
PHILADELPHIA -- Sometimes even cells get tired. When the T cells of your immune system are forced to deal over time with cancer or a chronic infection such as HIV or hepatitis C, they can develop 'T cell exhaustion,' becoming less effective and losing their ability to attack and destroy the invaders of the body. While the PD-1 protein pathway has long been implicated as a primary player in T cell exhaustion, a major question has been whether PD-1 actually directly causes exhaustion. A new paper from the lab of E. John Wherry, Ph.D., a professor of microbiology and director ...
Researchers from the University of Exeter found that the severity of ranavirosis, a devastating disease that kills thousands of frogs each year, increases in the presence of exotic fish. The use of garden chemicals was also associated with increased severity of the disease.
The study, which is published in the journal PLOS ONE, highlights the risks of releasing fish into garden ponds. Fish may amplify viral levels in the environment or cause stress hormone production that reduces immune function in wild frogs.
Lead author Alexandra North from the Environment and Sustainability ...
PITTSBURGH, June 3, 2015 - Pregnant women living close to a high density of natural gas wells drilled with hydraulic fracturing were more likely to have babies with lower birth weights than women living farther from such wells, according to a University of Pittsburgh Graduate School of Public Health analysis of southwestern Pennsylvania birth records.
The finding does not prove that the proximity to the wells caused the lower birth weights, but it is a concerning association that warrants further investigation, the researchers concluded. The study was funded by The Heinz ...
PHILADELPHIA - Individuals with a higher level of moral reasoning skills showed increased gray matter in the areas of the brain implicated in complex social behavior, decision making, and conflict processing as compared to subjects at a lower level of moral reasoning, according to new research from the Perelman School of Medicine and the Wharton School of the University of Pennsylvania in collaboration with a researcher from Charité Universitätsmediz in Berlin, Germany. The team studied students in the Masters of Business Administration (MBA) program at the Wharton ...
Researchers have analysed the genomes of thousands of women in the UK and the Netherlands to measure the extent to which a woman's genes play a role for when she has her first baby and how many children she will have. Significantly, they have found that some women are genetically predisposed to have children earlier than others, and conclude that they have passed down their reproductive advantage to the next generation. They also find, however, that while modern women who were born in the 20th century might be expected to have babies even earlier than previous generations ...
WYNNEWOOD, PA--June 3, 2015--a study led by Ellen Heber-Katz, PhD, of the Lankenau Institute for Medical Research (LIMR), part of Main Line Health (MLH), shows that a primordial form of energy production that still exists in mammals can be harnessed to achieve spontaneous tissue regeneration in mice, without the need for added stem cells. The study findings were reported in the June 3, 2015, issue of Science Translational Medicine, a peer-reviewed journal of the American Association for the Advancement of Science. Key collaborators in the study, which was supported by grants ...
A lot of problems, associated with the mixing of the liquid in the microchannels, could be solved via proper organization of the inhomogeneous slip on the walls of these channels. This is the conclusion made by the joint group of Russian and German scientists lead by Olga Vinogradova, who is a professor at the M.V. Lomonosov Moscow State University and also a head of laboratory at the A.N. Frumkin Institute of Physical chemistry and Electrochemistry of the Russian Academy of Sciences. The article describing their theory was published in the latest issue of the journal ...
Scientists are beginning to unwrap the biology behind why some people are more prone to major depression and other psychiatric disorders than others when experiencing stressful life events. The researchers found that cellular activity in response to stress hormone receptor activation differs from individual to individual. The study, led by Janine Arloth, Ryan Bogdan, and Elisabeth Binder at the Max Planck Institute of Psychiatry in Germany, also shows that the genetic variations underlying this difference in stress response correlate with dysfunction in the amygdala, a ...
This news release is available in German. Scientists at the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn led by Prof. Stefan Remy report on this in the journal "Neuron". Their investigations give new insights into the workings of spatial memory. Furthermore, they could also help improve our understanding of movement related symptoms associated with Parkinson's disease.
In a familiar environment our movements are purposeful. For example, if we leave our office desk for a coffee break, we naturally follow a predefined route that has ...
This news release is available in German.
Contaminated samples have evidently created some confusion in the timetable of life. On the basis of ultra-clean analyses, an international team, including scientists from the Max Planck Institute for Biogeochemistry, has disproved supposed evidence that eukaryotes originated 2.5 to 2.8 billion years ago. In contrast to prokaryotes such as bacteria, eukaryotes have a nucleus. Some researchers thought they had discovered molecular remnants of living organisms in rock samples up to 2.8 billion years old. However, as the ...