(Press-News.org) It's one thing to grow bacteria in a test tube, perform a screen in the lab, and find a mutation in the pathogen's genes. It's a whole other thing, and much rarer, to find the exact same mutation in nature--in this case, in E. coli in urine samples from some 500 patients suffering from relapsing urinary tract infections.
The confluent discovery, by University Distinguished Professor Kim Lewis and his colleagues, was published on Wednesday in the journal Nature. It could put people with relapsing UTIs on the fast track for a new therapeutic regimen that Lewis described in an earlier paper.
"We took a large collection of E. coli isolates from patients with relapsing UTIs," explains Lewis, who is director of the Antimicrobial Discovery Center. "And we found that quite a number of those isolates had exactly the same mutation--in a gene called hipA--that we and other scientists have seen in test-tube experiments."
Pooja Balani, a doctoral student in Lewis' lab at the time of the study and a first author of the paper, spent countless hours performing a genetic screen with then Northeastern research assistant professor Marin Vuli? and poring over both test-tube cultures of E. coli and patients' UTI isolates, in search of hipA mutations.
She was delighted by what she saw: hipA leapt to the fore in both populations.
The "persister" breakthrough
An estimated 150 million UTIs occur each year worldwide, accounting for $6 billion in healthcare costs, according to the American Urological Association. The bacterium E. coli is responsible for the majority of them. Antibiotics are the standard treatment, but often the infection returns when treatment is stopped.
Lewis' lab had spent years trying to learn why, and in 2001 published a paper that brought the answer into the light of day: A subpopulation of bacterial cells called "persisters" was conferring antibiotic "tolerance."
Antibiotic tolerance is distinct from antibiotic "resistance," which occurs when a pathogen acquires a genetic mutation that allows it to code for a protein that destroys the antibiotic. Think of it this way: With resistance, the bacteria brandish a new killer weapon. With tolerance, the bacteria hide in a foxhole, waiting till the enemy has fled. Then they come out and multiply.
Bacteria are one-cell organisms. To reproduce, they simply divide: One cell becomes two cells, and so on, until an army of progeny infect the host--here, a person's urinary tract. But sometimes the division results in one active bacteria cell, which continues to grow and divide, and one that is alive but stops growing--it is dormant, existing in what Lewis calls "a sporelike state." That is a persister cell.
"There's a small subpopulation of persisters that are formed by all pathogens we've studied so far," says Lewis. Because antibiotics attack only actively functioning bacterial cells, he says, persisters escape the onslaught.
"Persisters are like a bet-hedging defense strategy for bacteria," says Balani. "Ultimately they save the population."
From the lab to the bedside
Collaborators in the new study included Maria A. Schumacher, Richard G. Brennan, and their students at Duke University School of Medicine, who analyzed the structure of hipA to determine how the mutation increased production of persister cells. What they found was a molecular balancing act gone awry.
The hipA gene codes for a protein--a toxin. The toxin is usually held in check by another protein, an antitoxin, that is coded for by another gene, hipB. Toxin-antitoxin gene pairs are "scattered around the chromosomes of all bacteria we know of," says Lewis. A mutation in either gene, however, can throw the balance off kilter. Hence, the more toxin produced by hipA, the more likely the cell will shut down--that is, become a persister. "The hipA mutation gives rise to about 1,000 times more persisters than a gene without it," says Lewis.
Knowing this genetic mechanism could enable clinicians to customize treatment for relapsing UTIs. "You can track whether your patient has E. coli with a hipA mutation, and if so, introduce a pulse-dosing regimen," says Lewis, citing his earlier paper about pulse dosing and the pathogen that causes Lyme disease.
Pulse dosing, he says, is straightforward: You give the patient an antibiotic and it kills all the growing cells. Then the persister cells start "waking up." But before they can divide to form a new population, you hit them with the antibiotic again.
"In a test tube, if you repeat this a couple of times, you can completely eradicate the population," Lewis says. "I believe that the same thing can be done in people."
INFORMATION:
RICHLAND, Wash. -- Using a climate model that can tag sources of soot from different global regions and can track where it lands on the Tibetan Plateau, researchers have determined which areas around the plateau contribute the most soot -- and where. The model can also suggest the most effective way to reduce soot on the plateau, easing the amount of warming the region undergoes.
The work, which appeared in Atmospheric Chemistry and Physics in June, shows that soot pollution on and above the Himalayan-Tibetan Plateau area warms the region enough to contribute to earlier ...
Following several years of research and collaboration, physicians and engineers at Johns Hopkins and Walter Reed National Military Medical Center say they have developed a computer platform that provides rapid, real-time feedback before and during facial transplant surgery, which may someday improve face-jaw-teeth alignment between donor and recipient.
Surgeons performed the first successful transplant of facial features, including the jaw and teeth, in 2008, mainly relying on visual judgment. Since then, approximately 30 facial transplants have been done worldwide, ...
Brown dwarfs are relatively cool, dim objects that are difficult to detect and hard to classify. They are too massive to be planets, yet possess some planetlike characteristics; they are too small to sustain hydrogen fusion reactions at their cores, a defining characteristic of stars, yet they have starlike attributes.
By observing a brown dwarf 20 light-years away using both radio and optical telescopes, a team led by Gregg Hallinan, assistant professor of astronomy at Caltech, has found another feature that makes these so-called failed stars more like supersized planets--they ...
CHAPEL HILL, NC - The stem cells in our gut divide so fast that they create a completely new population of epithelial cells every week. But this quick division is also why radiation and chemotherapy wreak havoc on the gastrointestinal systems of cancer patients - such therapies target rapidly dividing cells. Scientists at the UNC School of Medicine and the UNC Lineberger Comprehensive Cancer Center found that a rare type of stem cell is immune to radiation damage thanks to high levels of a gene called Sox9.
The discovery, which was made in mice and published in the journal ...
Washington, DC--The Endocrine Society today issued a Clinical Practice Guideline (CPG) on strategies for treating Cushing's syndrome, a condition caused by overexposure to the hormone cortisol.
The CPG, entitled "Treatment of Cushing's Syndrome: An Endocrine Society Clinical Practice Guideline," was published online and will appear in the August 2015 print issue of the Journal of Clinical Endocrinology and Metabolism (JCEM), a publication of the Endocrine Society.
Cushing's syndrome occurs when a person has excess cortisol in the blood for an extended period, according ...
Enrolling in an insurance plan under the Affordable Care Act is only the first step for consumers to be actively engaged in their health care, according to a new analysis from RAND Corporation researchers.
To understand the issues facing consumers as well as the payers, providers and support organizations who work directly with them, RAND researchers conducted phone-based interviews with insurance companies, physician groups and community support nonprofit organizations. The analysis of the interviews shows more work is necessary to support consumers past the point of ...
Kindergarteners' social-emotional skills are a significant predictor of their future education, employment and criminal activity, among other outcomes, according to Penn State researchers.
In a study spanning nearly 20 years, kindergarten teachers were surveyed on their students' social competence. Once the kindergarteners reached their 20s, researchers followed up to see how the students were faring, socially and occupationally. Students demonstrating better prosocial behavior were more likely to have graduated college, to be gainfully employed and to not have been arrested ...
TORONTO, ON - People who have inflammatory bowel disease (IBD), such as Crohn's disease or ulcerative colitis, have twice the odds of having a generalized anxiety disorder at some point in their lives when compared to peers without IBD, according to a new study published by University of Toronto researchers.
"Patients with IBD face substantial chronic physical problems associated with the disease," said lead-author Professor Esme Fuller-Thomson, Sandra Rotman Endowed Chair at the University of Toronto's Factor-Inwentash Faculty of Social Work. "The additional burden of ...
Today the nonprofit Alliance for Aging Research released a white paper, Our Best Shot: Expanding Prevention through Vaccination in Older Adults, that provides a comprehensive overview of the factors that drive vaccination underutilization in seniors and offers recommendations on how industry, government, and health care experts can improve patient compliance.
Although influenza, pneumococcal, tetanus, and shingles vaccines are routinely recommended for older adults, are cost-effective, are covered to varying degrees by health insurance, and prevent conditions that have ...
The coalescence of two black holes -- a very violent and exotic event -- is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been impossible so far.
Colliding black holes do, however, release a phenomenal amount of energy as gravitational waves. The first observatories capable of directly detecting these 'gravity signals' -- ripples in the fabric of spacetime first predicted by Albert Einstein 100 years ago -- will begin observing the universe later this year.
When the gravitational ...