PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Scientists paint multicolor atlas of the brain

A novel technique developed by Columbia researchers known as NeuroPAL helps tease out the dynamics of neural networks in the nervous system of microscopic worms

Scientists paint multicolor atlas of the brain
2021-01-08
(Press-News.org) The human brain contains approximately 86 billion neurons, or nerve cells, woven together by an estimated 100 trillion connections, or synapses. Each cell has a role that helps us to move muscles, process our environment, form memories, and much more.

Given the huge number of neurons and connections, there is still much we don't know about how neurons work together to give rise to thought or behavior.

Now Columbia scientists have engineered a coloring technique, known as NeuroPAL (a Neuronal Polychromatic Atlas of Landmarks), which makes it possible--at least in experiments with Caenorhabditis elegans (C. elegans), a worm species commonly used in biological research--to identify every single neuron in the mind of a worm.

Their research appears in the Jan. 7 issue of the journal Cell.

NeuroPAL, which uses genetic methods to "paint" neurons with fluorescent colors, permits, for the first time ever, scientists to identify each neuron in an animal's nervous system, all while recording a whole nervous system in action.

"It's amazing to 'watch' a nervous system in its entirety and see what it does," said Oliver Hobert, professor in the Department of Biological Sciences at Columbia and a principal investigator with the Howard Hughes Medical Institute. "The images created are stunning-- brilliant spots of color appear in the worm's body like Christmas lights on a dark night."

To conduct their research, the scientists created two software programs: one that identifies all the neurons in colorful NeuroPAL worm images and a second that takes the NeuroPAL method beyond the worm by designing optimal coloring for potential methods of identification of any cell type or tissue in any organism that permits genetic manipulations.

"We used NeuroPAL to record brainwide activity patterns in the worm and decode the nervous system at work," said Eviatar Yemini, a postdoctoral researcher in the Department of Biological Sciences at Columbia and lead author of the study.

Because the colors are painted into the neuron's DNA and linked to specific genes, the colors can also be used to reveal whether these specific genes are present or absent from a cell.

The researchers said that the novelty of the technique may soon be overshadowed by the discoveries it makes possible. In advance of their Cell publication, Hobert and Yemini released NeuroPAL to the scientific community, and several studies already have been published showing the utility of the tool.

"Being able to identify neurons, or other types of cells, using color can help scientists visually understand the role of each part of a biological system," Yemini said. "That means when something goes wrong with the system, it may help pinpoint where the breakdown occurred."

Collaborators on the study include Liam Paninski, Columbia University; Vivek Venkatachalam, Northeastern University; and Aravinthan Samuel, Harvard University.

INFORMATION:


[Attachments] See images for this press release:
Scientists paint multicolor atlas of the brain

ELSE PRESS RELEASES FROM THIS DATE:

Tasmanian tiger pups found to be extraordinary similar to wolf pups

Tasmanian tiger pups found to be extraordinary similar to wolf pups
2021-01-08
Micro-CT scanning and digital reconstructions have been used to compare the skulls of the Tasmanian tiger (thylacine) and wolf across their early development and into adulthood, establishing that not only did the thylacine resemble the wolf as adults, but also as newborns and juveniles. "Remarkably, the Tasmanian tiger pups were more similar to wolf pups than to other closely related marsupials," Professor Andrew Pask from the University of Melbourne said. The collaborative study with Flinders University and Museums Victoria complement earlier findings that thylacine and wolf have evolved similar instructions in their genome, which influence cranial stem cells during development. While ...

Nanocrystals that eradicate bacteria biofilm

Nanocrystals that eradicate bacteria biofilm
2021-01-08
The COVID-19 pandemic is raising fears of new pathogens such as new viruses or drug-resistant bacteria. To this, a Korean research team has recently drawn attention for developing the technology for removing antibiotic-resistant bacteria by controlling the surface texture of nanomaterials. A joint research team from POSTECH and UNIST has introduced mixed-FeCo-oxide-based surface-textured nanostructures (MTex) as highly efficient magneto-catalytic platform in the international journal Nano Letters. The team consisted of professors In Su Lee and ...

Scientists develop a cheaper method that might help create fuels from plants

2021-01-08
COLUMBUS, Ohio - Scientists have figured out a cheaper, more efficient way to conduct a chemical reaction at the heart of many biological processes, which may lead to better ways to create biofuels from plants. Scientists around the world have been trying for years to create biofuels and other bioproducts more cheaply; this study, published today in the journal Scientific Reports, suggests that it is possible to do so. "The process of converting sugar to alcohol has to be very efficient if you want to have the end product be competitive with fossil fuels," said Venkat Gopalan, a senior author on the paper and professor of chemistry and biochemistry at The Ohio State University. ...

Bioenergetics: New features of ATP synthase

2021-01-08
The mitochondrial ATP synthase is energy-converting macromolecular machine that uses the electrochemical potential across the bioenergetic membrane called cristae. This potential is maintained via a membrane curvature that is induced by ATP synthase assembled in dimers. The dimers shaping the bioenergetic membrane were thought to be universal across the eukaryotic organisms. Two newly published cryo-EM studies by Kock-Flygaard et al and Mühleip et al from Alexey Amunts lab, identify different types of ATP synthase organization. The structure of the ATP synthase from ciliates revealed a dimer, which unlike in all the previously investigated complexes, the two ...

Research finds increased trust in government and science amid pandemic

2021-01-08
New Curtin University research has found a dramatic increase in people's trust in government in Australia and New Zealand as a result of the COVID pandemic. Published in the Australian Journal of Public Administration, the team surveyed people in Australia and New Zealand in July 2020 and found confidence in public health scientists to also be high and for this trust to be manifested in higher usage of government COVID phone apps. Lead researcher Professor Shaun Goldfinch, ANZSOG WA Government Chair in Public Administration and Policy based at the John Curtin Institute of Public Policy at Curtin said the management of the pandemic by authorities led to a dramatic increase in trust in government. "Using an online panel, we surveyed a representative sample of 500 people each in Australia ...

Antibiotic resistance from random DNA sequences

2021-01-08
An important and still unanswered question is how new genes that cause antibiotic resistance arise. In a new study, Swedish and American researchers have shown how new genes that produce resistance can arise from completely random DNA sequences. The results have been published in the journal PLOS Genetics. Antibiotic resistance is a major global problem and the spread of resistant bacteria causes disease and death, and constitutes a major cost to society. The most common way for bacteria to develop resistance is by taking up various types of resistance genes from other bacteria. These genes encode proteins (peptides) that can lead to resistance by: (i) deactivating the antibiotic, (ii) reducing its concentration, or (iii) altering ...

Detecting COVID-19 antibodies in 10-12 seconds

Detecting COVID-19 antibodies in 10-12 seconds
2021-01-08
PITTSBURGH--Researchers at Carnegie Mellon University report findings on an advanced nanomaterial-based biosensing platform that detects, within seconds, antibodies specific to SARS-CoV-2, the virus responsible for the COVID-19 pandemic. In addition to testing, the platform will help to quantify patient immunological response to the new vaccines with precision. The results were published this week in the journal Advanced Materials. Carnegie Mellon's collaborators included the University of Pittsburgh (Pitt) and the UPMC. The testing platform identifies the presence of two of the virus' antibodies, spike S1 protein and receptor binding domain (RBD), in a ...

Perceiving prosthesis as lighter thanks to neurofeedback

Perceiving prosthesis as lighter thanks to neurofeedback
2021-01-08
Leg amputees are often not satisfied with their prosthesis, even though the sophisticated prostheses are becoming available. One important reason for this is that they perceive the weight of the prosthesis as too high, despite the fact that prosthetic legs are usually less than half the weight of a natural limb. Researchers led by Stanisa Raspopovic, a professor at the Department of Health Sciences and Technology, have now been able to show that connecting the prostheses to the nervous system helps amputees to perceive the prosthesis weight as lower, which ...

Which came first, sleep or the brain?

Which came first, sleep or the brain?
2021-01-08
Stay awake too long, and thinking straight can become extremely difficult. Thankfully, a few winks of sleep is often enough to get our brains functioning up to speed again. But just when and why did animals start to require sleep? And is having a brain even a prerequisite? In a study that could help to understand the evolutional origin of sleep in animals, an international team of researchers has shown that tiny, water-dwelling hydras not only show signs of a sleep-like state despite lacking central nervous systems but also respond to molecules associated ...

Bats with white-nose syndrome prefer suboptimal habitats despite the consequences

Bats with white-nose syndrome prefer suboptimal habitats despite the consequences
2021-01-08
Since 2006, a fungal disease called white-nose syndrome has caused sharp declines in bat populations across the eastern United States. The fungus that causes the disease, Pseudogymnoascus destructans, thrives in subterranean habitats where bats hibernate over the winter months. Bats roosting in the warmest sites have been hit particularly hard, since more fungus grows on their skin, and they are more likely to die from white-nose syndrome, according to a new study by researchers at Virginia Tech. But instead of avoiding these warm and deadly sites, bats continue to use them year after year. The reason? Bats are mistakenly preferring sites where fungal growth is ...

LAST 30 PRESS RELEASES:

Quality and quantity? The clinical significance of myosteatosis in various liver diseases

Expert consensus on clinical applications of fecal microbiota transplantation for chronic liver disease (2025 edition)

Insilico Medicine to present three abstracts at the 2026 Crohn’s & Colitis Congress highlighting clinical, preclinical safety, and efficacy data for ISM5411, a novel gut-restricted PHD1/2 inhibitor fo

New imaging technology detects early signs of heart disease through the skin

Resurrected ancient enzyme offers new window into early Earth and the search for life beyond it

People with obesity may have a higher risk of dementia

Insilico Medicine launches science MMAI gym to train frontier LLMs into pharmaceutical-grade scientific engines

5 pre-conference symposia scheduled ahead of International Stroke Conference 2026

To explain or not? Need for AI transparency depends on user expectation

Global prevalence, temporal trends, and associated mortality of bacterial infections in patients with liver cirrhosis

Scientists discover why some Central Pacific El Niños die quickly while others linger for years

CNU research explains how boosting consumer trust unlocks the $4 billion market for retired EV batteries

Reimagining proprioception: when biology meets technology

Chungnam National University study finds climate adaptation can ease migration pressures in Africa

A cigarette compound-induced tumor microenvironment promotes sorafenib resistance in hepatocellular carcinoma via the 14-3-3η-modified tumor-associated proteome

Brain network disorders study provides insights into the role of molecular chaperones in neurodegenerative diseases

Making blockchain fast enough for IoT networks

Chemotherapy rewires gut bacteria to curb metastasis

The hidden microbial communities that shape health in space

Arctic cloud and ice formation affected by Russian river runoff as region studied for first time

Study reveals synergistic effect of CDK2 and CDK4/6 combination therapy

Living walls boost biodiversity by providing safe spaces for urban wildlife

New AI method revolutionizes the design of enzymes

Smartwatch use enhances the detection of heart arrythmias, increasing the quality of care.

MAN PPK2: A “universal” enzyme for the production of RNA building blocks

Sniffing out the cause of keratoderma-associated foot odor

Tuning color through molecular stacking: A new strategy for smarter pressure sensors

Humans use local dialects to communicate with honeyguides

Theory-breaking extremely fast-growing black hole

ŌURA and National University of Singapore open Joint Lab to advance research in personalized preventive health

[Press-News.org] Scientists paint multicolor atlas of the brain
A novel technique developed by Columbia researchers known as NeuroPAL helps tease out the dynamics of neural networks in the nervous system of microscopic worms