(Press-News.org) Researchers reporting in Current Biology on January 11 have discovered that invasive brown tree snakes living on Guam can get around in a way that had never been seen before. The discovery of the snake's lasso-like locomotion for climbing their way up smooth vertical cylinders has important implications, both for understanding the snakes and for conservation practices aimed at protecting birds from them.
"Our most important finding is a new mode of snake locomotion," says co-senior author Julie Savidge of Colorado State University (CSU). "Only four major types have been recognized for nearly 100 years, and we have discovered a fifth mode."
The discovery of a fifth mode of locomotion--in additional to the known rectilinear, lateral undulation, sidewinding, and concertina modes--was a matter of serendipity. Savidge was working on a project aimed at protecting the nests of Micronesia starlings, one of only two native forest species still remaining on Guam.
People accidentally introduced the nocturnal snakes to Guam in the late 1940s or early 1950s. Shortly thereafter, bird populations started to decline. It's now recognized that the invasive snakes have decimated forest bird populations on the island. They are also responsible for extensive damage and many power outages across the island each year.
"Most of the native forest birds are gone on Guam," says Savidge. "There's a relatively small population of Micronesian starlings and another cave-nesting bird that have survived in small numbers."
"Understanding what brown tree snakes can and cannot climb has direct implications for designing barriers to reduce the dispersal and some of the deleterious effects of this highly invasive species," says co-senior author Bruce Jayne of the University of Cincinnati.
"For example," adds Thomas Seibert, also at CSU, "given that brown tree snakes can use lasso locomotion to defeat poles or cylinders of a certain size, we can design baffles to better protect bird houses used for restoring some of Guam's birds."
In the new study, the researchers were attempting to use a three-foot long metal baffle to keep the brown tree snakes from climbing up to bird boxes. The same baffles have been used to keep other snakes and raccoons away from nest boxes in the yards of birdwatchers. But, they soon found, their ability to deter brown tree snakes was rather short lived.
"We didn't expect that the brown tree snake would be able to find a way around the baffle," Seibert says. "Initially, the baffle did work, for the most part. Martin Kastner, a CSU biologist, and I had watched about four hours of video and then all of a sudden, we saw this snake form what looked like a lasso around the cylinder and wiggle its body up. We watched that part of the video about 15 times. It was a shocker. Nothing I'd ever seen compares to it."
Jayne explains that snakes typically climb steep, smooth branches or pipes using concertina locomotion, bending sideways to grip in at least two places. But lasso locomotion is different. Using the loop of the "lasso," the snakes form a single gripping region.
By recording and carefully analyzing high-resolution video of this new climbing method, the researchers found that the snakes have these little bends within the loop of the lasso. Those bends allow them to advance upwards slowly, by shifting the location of each bend.
That's not to say this way of climbing isn't a struggle for the snakes. In the process of their lasso locomotion, the researchers observed the snakes moving quite slowly. They also slip often, stop to rest, and breathe heavily.
"Even though they can climb using this mode, it is pushing them to the limits," Jayne says.
Savidge and Seibert say they hope to continue with the development of a baffle that brown tree snakes can't get around, which could then be used on Guam for bird restoration. Jayne plans to further test what brown tree snakes can and cannot traverse. He also wants to test the limits of the locomotor abilities of other snake species and learn more about the anatomy and physiology involved.
INFORMATION:
This work benefited from U.S. Navy, Joint Region Marianas funding for research on Micronesian starlings.
Current Biology, Savidge et al.: "A novel mode of locomotion expands the climbing abilities of snakes"
https://www.cell.com/current-biology/fulltext/S0960-9822(20)31763-2
Current Biology (@CurrentBiology), published by Cell Press, is a bimonthly journal that features papers across all areas of biology. Current Biology strives to foster communication across fields of biology, both by publishing important findings of general interest and through highly accessible front matter for non-specialists. Visit: http://www.cell.com/current-biology. To receive Cell Press media alerts, contact press@cell.com.
What The Study Did: Researchers examined pediatric COVID-19 hospitalization trends in 22 states for both severity among this population and spread of the virus.
Authors: Pinar Karaca-Mandic, Ph.D., of the University of Minnesota Carlson School of Management in Minneapolis, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamapediatrics.2020.5535)
Editor's Note: The article includes conflict of interest and funding/support disclosures. Please see the article for additional information, including ...
What The Study Did: Medical records for patients admitted to an urban academic medical center were analyzed for race and ethnicity for evidence of racial bias in clinician documentation.
Authors: Jessica R. Balderston, M.D., of Virginia Commonwealth University Medical Center in Richmond, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamainternmed.2020.5792)
Editor's Note: The article includes conflicts of interest disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest ...
BOSTON - A diet rich in healthy and plant-based foods is linked with the presence and abundance of certain gut microbes that are also associated with a lower risk of developing conditions such as obesity, type 2 diabetes and cardiovascular disease, according to recent results from a large-scale international study that was co-senior authored by Andrew T. Chan, MD, MPH, from Massachusetts General Hospital (MGH). The report appears in Nature Medicine.
"This study demonstrates a clear association between specific microbial species in the gut, certain foods, and risk of some common ...
Smartwatches and other battery-powered electronics would be even smarter if they could run AI algorithms. But efforts to build AI-capable chips for mobile devices have so far hit a wall - the so-called "memory wall" that separates data processing and memory chips that must work together to meet the massive and continually growing computational demands imposed by AI.
"Transactions between processors and memory can consume 95 percent of the energy needed to do machine learning and AI, and that severely limits battery life," said computer scientist Subhasish Mitra, senior author of a new study published in Nature Electronics.
Now, a team that includes Stanford computer scientist ...
Fish populations tend to do better in places where rigorous fisheries management practices are used, and the more measures employed, the better for fish populations and food production, according to a new paper published Jan. 11 in Nature Sustainability.
The study, led by Michael Melnychuk of the University of Washington's School of Aquatic and Fishery Sciences, draws upon the expertise of more than two dozen researchers from 17 regions around the world. The research team analyzed the management practices of nearly 300 fish populations to tease out patterns that lead to healthier fisheries across different locations. Their findings confirmed, through extensive data analysis, what many researchers ...
Galaxies begin to "die" when they stop forming stars, but until now astronomers had never clearly glimpsed the start of this process in a far-away galaxy. Using the Atacama Large Millimeter/submillimeter Array (ALMA), in which the European Southern Observatory (ESO) is a partner, astronomers have seen a galaxy ejecting nearly half of its star-forming gas. This ejection is happening at a startling rate, equivalent to 10 000 Suns-worth of gas a year -- the galaxy is rapidly losing its fuel to make new stars. The team believes that this spectacular event was triggered by a collision with another ...
Most organisms on earth depend on the energy from the sun. Sunlight is also an important coordinator of life's timers. Animals take important cues for proliferation, activity, feeding, or sleep from changing light conditions. These rhythms also exist in humans - as changing light conditions across the year can strongly impact human mood and psychology.
Part of the natural light from the sun we are exposed to consists of ultraviolet (UVA and UVB) light, a short-wavelength part of the spectrum that is largely missing in artificial lighting. So far, most research on seasonal cycles has focused on daylength. "In contrast to previous assumptions, we discovered that, in addition to daylength, the intensity of UVA light influences the seasonal responses of the bristle worm ...
Astronomers have looked nine billion years into the past to find evidence that galaxy mergers in the early universe could shut down star formation and affect galaxy growth.
New research led by Durham University, UK, the French Alternative Energies and Atomic Energy Commission (CEA)-Saclay and the University of Paris-Saclay, shows that a huge amount of star-forming gas was ejected into the intergalactic medium by the coming together of two galaxies.
The researchers say that this event, together with a large amount of star formation in the nuclear regions ...
Through the centuries, scientists and non-scientists alike have looked at the night sky and felt excitement, intrigue, and overwhelming mystery while pondering questions about how our universe came to be, and how humanity developed and thrived in this exact place and time. Early astronomers painstakingly studied stars' subtle movements in the night sky to try and determine how our planet moves in relation to other celestial bodies. As technology has increased, so too has our understanding of how the universe works and our relative position within it.
What remains a mystery, however, is a more detailed understanding of how stars and planets formed in the first place. Astrophysicists and cosmologists understand that the movement of materials across the interstellar medium (ISM) helped ...
A shadow over the promising inhaled interferon beta COVID-19 therapy has been cleared with the discovery that although it appears to increase levels of ACE2 protein - coronavirus' key entry point into nose and lung cells - it predominantly increases levels of a short version of that protein, which the virus cannot bind to.
The virus that causes COVID-19, known as SARS-CoV-2, enters nose and lung cells through binding of its spike protein to the cell surface protein angiotensin converting enzyme 2 (ACE2).
Now a new, short, form of ACE2 has been identified by Professor Jane Lucas, Professor Donna Davies, Dr Gabrielle Wheway and Dr Vito Mennella at the University of Southampton and University Hospital Southampton NHS Foundation Trust.
The study, published in Nature Genetics, shows ...