PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Scientists modeled protein behavior of archaeal viruses to crack protein folding mystery

Scientists modeled protein behavior of archaeal viruses to crack protein folding mystery
2021-01-13
(Press-News.org) Scientists from the Pacific Quantum Center of Far Eastern Federal University (FEFU) figured out how the AFV3-109 protein with slipknot structure folds and unfolds depending on temperature. The protein is typical for the viruses of the oldest single-celled organisms that can survive in the extreme conditions of underwater volcanic sources - archaea. The research outcome appears in PLOS ONE.

Using numerical methods and applying quantum field theory that is unique for the study of proteins, the FEFU scientists have probed into the folding topology (scheme) of the AFV3-109 protein featured with a slipknot. The research unfolded in several unexpected and intriguing results. First, it turned out that the sliding knot of the AFV3-109 protein goes through an intermediate knot, which has the topology of a much more complex trefoil knot, a simplest non-trivial knot in mathematics. Second, before folding of the slipknot is complete, it precedes by the swelling of the almost practically correctly folded AFV3-109 structure in a manner that the free end of the protein can pass into the loop of the knot. Third, the correct protein structure formation is divided into stages. At the beginning solid secondary structures form, i.e. threads and spirals, and then they fold into a regular knot. "The knotted structure of proteins makes them more durable and allows viruses, together with archaea, to withstand high temperatures. On the other hand, the presence of a knot makes the protein folding process nontrivial, because the protein cannot fold into the correct three-dimensional structure just by simple random movements of individual parts of the protein backbone. A lot of previous studies carried out by molecular dynamics methods have shown a low probability of such a knot formation, but in nature, this protein always forms a slipknot", says Dr. Alexander Molochkov, Head of the Pacific Quantum Center. For the long AFV3-109 protein molecule that ties itself into a knot, the coordinated collective behavior of the molecule as a whole is necessary. One feels like someone is purposefully tying the molecule into a knot. Such behavior turns the protein into an essential model to study mechanisms of folding's complex topology formation. The recent remarkable advances in protein structure prediction by machine learning methods still do not reveal the nature of this structure's formation. "In our work, we investigate the laws of symmetry that govern the behavior of a protein molecule. We managed to find out that local and chiral symmetry properties completely determine these complex processes and the non-trivial form of the protein", proceeds Alexander Molochkov. "This further confirms that every part of the protein is critical for the entire molecule to function properly. It also means that field theory is relevant for modeling the behavior of proteins that underlie all life." Following a classical field theory, each atom's motion can be considered a part of a collective degree of freedom with a certain number of common coordinates, such as a kink or soliton. An example of such a soliton is a tsunami wave with its destructive power. Therein a protein behaves as a whole akin tsunami. If one puts out a fragment of the protein, the entire molecule stops working correctly. The task of scientists is to detect which area to deactivate. That to be the key to understand the nature of many diseases triggered by protein misbehavior, including cancer, type 2 diabetes, infectious dementia syndrome (where proteins - prions cause dementia), and enveloped viruses, including the novel coronavirus, Ebola, and AIDS. Previously, FEFU researchers modeled the WW-domain's behavior of the FBP28 protein and found out how the replacement of individual amino acids leads to the rearrangement of the protein's entire structure and the consequences of changes in specific amino acids in certain places in the molecular chains. For the first time, FEFU scientists applied field theory to investigate proteins to predict the environment temperature and acidity-dependent changes in myoglobin structure. The paper explained the release of oxygen molecules when acidity at a certain site of myoglobin changes.

INFORMATION:


[Attachments] See images for this press release:
Scientists modeled protein behavior of archaeal viruses to crack protein folding mystery

ELSE PRESS RELEASES FROM THIS DATE:

'Ocean 100': Small group of companies dominates ocean economy

2021-01-13
DURHAM, N.C. - Most of the revenues extracted from use of the world's oceans is concentrated among 100 transnational corporations, which have been identified for the first time by researchers at Duke University and the Stockholm Resilience Centre at Stockholm University. Dubbed the "Ocean 100," these "ocean economy" companies collectively generated $1.1 trillion in revenues in 2018, according to research published Wednesday in the journal Science Advances. If the group were a country, it would have the world's 16th-largest economy, roughly equivalent to the gross domestic product (GDP) of Mexico. "Now that we know who some of the biggest beneficiaries from the ocean economy are, this can help improve transparency relating to sustainability and ocean ...

Robotic swarm swims like a school of fish

Robotic swarm swims like a school of fish
2021-01-13
Schools of fish exhibit complex, synchronized behaviors that help them find food, migrate and evade predators. No one fish or team of fish coordinates these movements nor do fish communicate with each other about what to do next. Rather, these collective behaviors emerge from so-called implicit coordination -- individual fish making decisions based on what they see their neighbors doing. This type of decentralized, autonomous self-organization and coordination has long fascinated scientists, especially in the field of robotics. Now, a team of researchers at the Harvard John A. Paulson School of Engineering and ...

Researchers identify nanoparticles that could deliver therapeutic mRNA before birth

Researchers identify nanoparticles that could deliver therapeutic mRNA before birth
2021-01-13
Philadelphia, January 13, 2021--Researchers at Children's Hospital of Philadelphia and the School of Engineering and Applied Science at the University of Pennsylvania have identified ionizable lipid nanoparticles that could be used to deliver mRNA as part of fetal therapy. The proof-of-concept study, published today in Science Advances, engineered and screened a number of lipid nanoparticle formulations for targeting mouse fetal organs and has laid the groundwork for testing potential therapies to treat genetic diseases before birth. "This is an important first step in identifying nonviral mediated approaches for delivering cutting-edge therapies before birth," said co-senior author William H. Peranteau, MD, an attending surgeon in the Division of ...

New insights into the control of inflammation

New insights into the control of inflammation
2021-01-13
PHILADELPHIA -- (Jan. 13, 2021) -- Scientists at The Wistar Institute discovered that Early Growth Response 1 (EGR1), a protein that turns on and off specific genes during blood cell development, inhibits expression of pro-inflammatory genes in macrophages. As part of their function to protect the body against pathogens, macrophages play a major role in initiation, maintenance, and resolution of inflammation. The discovery expands the understanding of how macrophages are set off and deactivated in the inflammatory process, which is critical in many normal and pathological conditions. These findings were published online in the journal Science Advances. "By deepening the understanding of the role of EGR1, we ...

COVID-19 vaccine creates incentive to improve our health

2021-01-13
COLUMBUS, Ohio - While we wait for our turn to get vaccinated against SARS-CoV-2, we could - and probably should - use the time to make sure we bring our healthiest emotional and physical selves to the treatment, a new review of previous research suggests. Ohio State University researchers reviewed 49 vaccine studies in humans dating back 30 years that document how stress, depression and poor health behaviors can negatively affect the body's immune response to vaccination, and how improving health factors can enhance that response. The impaired immune responses tended to fall into three categories - interference with the ...

In new Skoltech research, 'e-nose' and computer vision help cook the perfect chicken

2021-01-13
Skoltech researchers have found a way to use chemical sensors and computer vision to determine when grilled chicken is cooked just right. These tools can help restaurants monitor and automate cooking processes in their kitchens, and perhaps one day even end up in your 'smart' oven. The paper detailing this research results, supported by a Russian Science Foundation grant, was published in the journal Food Chemistry. How do you tell that chicken breast on your grill is ready for your plate? You probably look at it closely and smell it to make sure it is done the way you like it. However, if you are a restaurant chef or head cook at a huge industrial ...

Pivotal discovery in quantum and classical information processing

Pivotal discovery in quantum and classical information processing
2021-01-13
Scientists tame photon-magnon interaction. Working with theorists in the University of Chicago's Pritzker School of Molecular Engineering, researchers in the U.S. Department of Energy's (DOE) Argonne National Laboratory have achieved a scientific control that is a first of its kind. They demonstrated a novel approach that allows real-time control of the interactions between microwave photons and magnons, potentially leading to advances in electronic devices and quantum signal processing. Microwave photons are elementary particles forming the electromagnetic waves that we use for wireless communications. On the other hand, magnons are the elementary particles forming what scientists call "spin waves" -- wave-like disturbances in ...

Nanotechnology prevents premature birth in mouse studies

2021-01-13
In a study in mice and human cells, Johns Hopkins Medicine researchers say that they have developed a tiny, yet effective method for preventing premature birth. The vaginally-delivered treatment contains nanosized (billionth of a meter) particles of drugs that easily penetrate the vaginal wall to reach the uterine muscles and prevent them from contracting. If proven effective in humans, the treatment could be one of the only clinical options available to prevent preterm labor. The FDA has recommended removing Makena (17-hydroxyprogesterone caproate), the only approved medicine for this purpose, from the market. The study was published Jan. 13 in Science Translational Medicine. There ...

Scientists discover new 'spectacular' bat from West Africa

Scientists discover new spectacular bat from West Africa
2021-01-13
A group of scientists led by the American Museum of Natural History and Bat Conservation International have discovered a new species of a striking orange and black bat in a mountain range in West Africa. The species, which the researchers expect is likely critically endangered, underscores the importance of sub-Saharan "sky islands" to bat diversity. The species is described today in the journal American Museum Novitates. "In an age of extinction, a discovery like this offers a glimmer of hope," said Winifred Frick, chief scientist at Bat Conservation International and ...

Resilience to climate change?

Resilience to climate change?
2021-01-13
With the impact of climate change increasing by the day, scientists are studying the ways in which human behavior contributes to the damage. A recent study at Walla Walla University, by a collaboration of researchers from Walla Walla University and La Sierra University, examined the effects of acidic water on octopuses, potentially bringing new insight into both how our activities impact the world around us, and the way that world is adapting in response. The study, "Impact of Short- and Long-Term Exposure to Elevated Seawater PCO2 on Metabolic Rate ...

LAST 30 PRESS RELEASES:

Freeze-framing the cellular world to capture a fleeting moment of cellular activity

Computer hardware advance solves complex optimization problems

SOX2: a key player in prostate cancer progression and treatment resistance

Unlocking the potential of the non-coding genome for precision medicine

Chitinase-3-like protein 1: a novel biomarker for liver disease diagnosis and management

The Journal of Nuclear Medicine Ahead-of-Print Tip Sheet: August 22, 2025

Charisma Virtual Social Coaching named a finalist for Global Innovation Award

From the atmosphere to the abyss: Iron's role in Earth's climate history

US oil and gas air pollution causes unequal health impacts

Scientists reveal how microbes collaborate to consume potent greenhouse gas

UMass Amherst kinesiologist receives $2 million ‘outstanding researcher’ award from NIH

Wildfire peer review report for land Brandenburg, Germany, is now online

Wired by nature: Precision molecules for tomorrow's electronics

New study finds hidden body fat is linked to faster heart ageing

How a gift card could help speed up Alzheimer’s clinical research

Depression and anxiety symptoms in adults displaced by natural disasters

Cardiovascular health at the intersection of race and gender in Medicare fee for service

World’s first observation of the transverse Thomson effect

Powerful nodes for quantum networks

Mapping fat: How microfluidics and mass spectrometry reveal lipid landscapes in tiny worms

ATOX1 promotes hepatocellular carcinoma carcinogenesis via activation of the c-Myb/PI3K/AKT signaling pathway

Colibactin-producing E. coli linked to higher colorectal cancer risk in FAP patients

Animal protein not linked to higher mortality risk, study finds

Satellite insights into eutrophication trends on the Qinghai–Tibet plateau

Researchers develop an innovative method for large-scale analysis of metabolites in biological samples

Asteroid Bennu is a time capsule of materials bearing witness to its origin and transformation over billions of years

New AI model can help extend life and increase safety of electric vehicle batteries

Wildfires can raise local death rate by 67%, shows study on 2023 Hawaiʻi fires

Yogurt and hot spring bathing show a promising combination for gut health

Study explains how lymphoma rewires human genome

[Press-News.org] Scientists modeled protein behavior of archaeal viruses to crack protein folding mystery