PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Foraging humans, mammals and birds who live in the same place behave similarly

2021-01-14
(Press-News.org) Foraging humans find food, reproduce, share parenting, and even organise their social groups in similar ways as surrounding mammal and bird species, depending on where they live in the world, new research has found.

The study, published today in Science, shows environmental factors exert a key influence on how foraging human populations and non-human species behave, despite their very different backgrounds.

The team of international researchers analysed data from more than 300 locations around the world, observing the behaviours of foraging human populations alongside other mammal and bird species living in the same place. Their findings show that for almost all behaviours, 14 of the 15 investigated, humans were more likely to behave similarly to the majority of other non-human species living in the same place than those elsewhere.

"Previous research has explored how environmental conditions shape the behaviour of closely related species. This is the first time a broad comparative perspective has been used to systematically compare very different species - humans, mammals, and birds - across a wide range of behaviours. Our evidence shows how remarkably pervasive and consistent the effect of the local environment is on behaviour," said author Dr Toman Barsbai, from the University of Bristol and the Kiel Institute for the World Economy. "The similarities are not only present for behaviours directly relating to the environment, such as finding food, where we might expect a clear correlation, but also for reproductive and social behaviours, which might seem less dependent on the local environment."

For example, when obtaining food, there are environments where humans get a significant proportion of their calories from hunting. In these locations it was shown there are much larger proportions of carnivorous mammals and birds than elsewhere. Similar associations were also identified for reliance on fishing, how far to travel to gather food, whether or not to store food, and whether or not to migrate between seasons - with each behaviour found to be more common in humans, other mammals, and birds in some locations than in others.

For reproductive behaviour, there are large differences across populations when individuals first reproduce. In some human populations, men on average have their first child when they are 30 years of age or older, whereas in other populations men might be younger than 20. At locations where humans have children later, the local mammals and birds are similarly on average older when they first reproduce than the mammals and birds living in places where humans reproduce early. The study also showed other variables were correlated across species, including the proportion of individuals having multiple partners, how far individuals move to live with new partners, and how likely couples are to divorce.

Regarding social interactions, there are some places in the world where offspring care is more equally shared between parents than in other places, places where group sizes are larger, and places where social classes, meaning some individuals are more dominant, are more common in both humans and non-human species.

The study findings strongly indicated these behavioural similarities were associated with the local environment. Knowing the environmental conditions of a place allowed the researchers to predict what behaviours to expect there. However, it is not yet clear which environmental factors are of particular importance for specific behaviours or what the mechanisms are linking them.

"We were surprised these associations appeared across humans, mammals, and birds," said author Dr Dieter Lukas, from the Max Planck Institute for Evolutionary Anthropology in Germany. "Different species could be expected to sense and interact with their environments in very different ways. Even if they end up with the same behaviour, they might have gotten there through different paths. In particular, the flexibility that allows humans to adapt behaviour to environments around the world is probably facilitated by relying on learning from other people and building on this information over generations."

The study focused on human populations who obtain most of their food by foraging in the environment where they live. "It would be interesting to see how many of these environmental restrictions shape other societies where individuals get food through agricultural specialisation and trading", said author Dr Andreas Pondorfer, from the University of Bonn and the Technical University of Munich. "Agricultural intensification is often thought to buffer humans from the environment. Nevertheless, individuals in these populations might not be as buffered as we think and behaviours might still reflect adaptations that occurred before the adoption of agriculture."

INFORMATION:

Paper

'Local convergence of behavior across species', by Toman Barsbai, Dieter Lukas and Andreas Pondorfer in Science

Notes to editors

The following images are available in high resolution on request: https://share.eva.mpg.de/index.php/s/XRznjcYtq3eMqSW

When the embargo lifts, the paper will be available here: https://doi.org/10.1126/science.abb7481

Please see below for detailed FAQs relating to the research.

All authors are available for interview and can be reached as follows:

Toman Barsbai (School of Economics, University of Bristol, Bristol, UK; Research Center International Development, Kiel Institute for the World Economy, Kiel, Germany): toman.barsbai@bristol.ac.uk, +44 74 344 457 56, https://sites.google.com/view/tomanbarsbai/ Dieter Lukas (Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany): dieter_lukas@eva.mpg.de, +49 341 658 370 83, http://dieterlukas.mystrikingly.com/ Andreas Pondorfer (Department of Economics, University of Bonn, Bonn, Germany; TUMCS for Biotechnology and Sustainability, Technical University of Munich, Munich, Germany): andi.pondorfer@gmail.com, +49 163 788 41 75, https://andreas-pondorfer.mystrikingly.com/

FAQs

What is the question we are trying to address? We humans exhibit an enormous diversity of behaviour, which has allowed us to colonize essentially all terrestrial environments around the world. But nonhuman animals also occur in a large variety of behaviours and environments. Which role do local environments play in explaining this huge global variation in behaviour? Does where one lives shape how one behaves and do the same environmental forces apply to both humans and nonhuman animals? In our study, we explore whether living in a specific local environment constrains the behaviour of humans and other mammal and bird species who share the same environment in a similar way. If so, we should expect humans and nonhuman species who live in the same location to behave similarly. Differences in local environments would then explain part of the observed global variation in behaviour across species.

What did we expect to find? It was not clear to us what to expect as the theoretical prediction is ambiguous. On the one hand, species who live together in one place might specialize into different niches to reduce resource competition. In this case, we would expect behavioural diversity as different species would engage in different behaviours. On the other hand, local environmental conditions might only permit a certain range of behaviours. In this case, we would expect behavioural similarity as species with similar behaviours would tend to assemble in locations where these behaviours are most adaptive. It is even less clear what to expect for humans. There is evidence that cultural processes are responsible for the large variation in behaviour observed across human societies and that we humans build our own ecological niche. At the same time, however, ecological constraints that shape behaviour in other species might also apply to our own species. A priori, we thus did not have clear expectations about how these different forces play out in the real world.

How did we conduct our analysis? We build our analysis around an ethnographic database that provides detailed information on the behaviour of 339 human hunter-gatherer populations living in diverse environments around the world (Africa n=20, Asia n=28, Australia n=56, North America n=215, and South America n=20). The database was compiled by the archaeologist Lewis Binford and relies on anthropological observations from the 19th and 20th centuries. Our focus is on small-scale, foraging human populations because they are generally tied to a specific location and acquire food from the available local resources. For each of the human populations, we first identified all mammal and bird species that lived in the same location (i.e., within a 25km radius around the centroid of each human population). We then identified 15 behavioural variables encoded in the human database for which closely comparative data exist for the nonhuman species. We assigned the typically observed behaviour to each species and computed average mammal and bird behaviours at the different locations. We were thus able to analyse the association between human, mammal, and bird behaviours across locations.

Which behaviours did we look at? We looked at a wide range of behaviours that reflect three broad behavioural domains: (i) foraging behaviour (i.e., reliance on meat diet, reliance on fish diet, extent of food storage, day range, migratory distance, distribution range), (ii) reproductive behaviour (i.e., age at first reproduction, extent of polygyny, existence of patrilocality, existence of exogamy, divorce), and (iii) social behavior (i.e., extent of paternal care, population density, group size, existence of social classes).

What do we find? We find that *foraging* human populations and nonhuman mammal and bird species who live in the same location behave similarly. This local convergence of behaviour applies to foraging, reproductive, and social behaviour. In total, we found a systematic relationship for 14 out of the 15 behaviours we analysed.

What are the implications of our findings? Local environmental conditions appear to filter for which behaviours occur at a specific location. Only those behaviour that are beneficial, or at least do not have a substantial cost, can be expressed. Most importantly, our findings show that these ecological filters operate similarly across species from very different taxonomic groups including our own species. We were surprised that local environmental conditions appear to select for similar variants of foraging, reproductive, and social behaviours in humans, mammals, and birds. Despite our behavioural flexibility that has allowed us to live in very diverse environments we humans thus rely on similar behavioural strategies as nonhuman animals in their respective local environments. Our findings offer new insights into why there is variation in behaviour across environments and cultures.

How do we know that the observed relationships reflect ecological conditions? First, the observed relationships in behaviour across species weaken considerably when we account for variables that capture ecological conditions (i.e., biomes, latitude, altitude, and proximity to coast) in our statistical analysis. This is consistent with the idea that ecological conditions constrain behaviour. Second, associations between the same ecological variables and the different behaviours are very similar across humans, mammals, and birds. This is consistent with the idea that specific ecological conditions consistently shape behaviour across species. Third, in line with this argument, human behaviour from one location is similar to nonhuman behaviour found at other locations with similar ecological conditions.

Do our findings mean that humans are just like other animals? From an evolutionary perspective, humans are part of the animal lineage. Humans could thus be tied to the local environment in similar ways as other species. However, humans exhibit enormous variation in behaviour and are the only mammal that occurs in essentially all terrestrial environments. Variation in behaviour also exists in other species, but to a much lower extent than for humans. The flexibility that allows humans to adapt their behaviour to local conditions and the extreme reliance on learning from others and building on this information over generations set humans apart.

Do our findings imply that human culture does not matter for how humans behave? No. Our results only suggest that human culture *also* emerged out of adaptation to local ecological condition, in addition to independent non-ecological processes.

Are these foraging human populations simple because they behave like animals? No, quite the opposite. While the behaviour might superficially look the same, human foraging societies generally developed sophisticated techniques to deal with the challenges they encounter in their environments. For example, where humans and other mammals and birds rely more on fishing, human populations have acquired detailed knowledge and sophisticated technology on how to obtain fish. Foraging human populations persisted in their local environments precisely because they had identified the most appropriate set of behaviours to live in environments, where other societies, which we might erroneously consider more advanced, could not persist. In addition, many nonhuman animals are as well much more sophisticated than we usually acknowledge.

What do our findings tell us about industrial human societies? Not much. On the one hand, agriculture, market integration, and technology might weaken the response of human behaviour to local environmental conditions. On the other hand, there might be path dependencies (e.g., via cultural transmission of behaviour across generations), which constrain the subsequent evolution of behaviours. In this case, the behavioural diversity of industrial human societies might still reflect past adaptations to the local environment. Our evidence on foraging human societies does not allow us to answer this question.

Do our findings reflect natural selection based on genes? Our study cannot reveal what caused the differences in behaviour, either across human populations or across other species. In general, the expression of any behaviour is influenced by an interplay of a large number of genes, changes through development and flexibility, and experiences of diverse environmental factors. The exact genetic regions and environmental factors involved, and the interplay among them, are unknown for the behaviours we analysed. It is unlikely that the differences in behaviour we observe across human populations can be traced back to single regions within the genome. First, there are no clear genetic differences that separate all individuals in one population from all individuals in another population. Second, for all the behaviours that we analysed, individuals can change their behaviour as soon as they move to a new society. This happens regularly among humans, e.g., to form marriages. Third, the rules that govern behaviour often change quite rapidly, e.g., when societies adopt new religious traditions.

Do our findings imply that there is a single dominant behaviour in a specific environment? No. There might be multiple niches at a given locality and different ways to cope with ecological challenges. Indeed, there are multiple ways to behave in all environments we looked at. Instead, our findings suggest that local ecological constraints act like a filter making specific behaviours more likely to occur in those environments where they are adaptative or at least do not have a substantial cost (but without determining the outcome). For instance, food storage is more beneficial in environments with strong seasonality that makes it difficult to source food in winter. Food storage is hence relatively frequent there. But this does not imply that food storage is a must or is not found in other environments with a more stable food supply throughout the year. It is only less frequent in those environments.



ELSE PRESS RELEASES FROM THIS DATE:

Hard to crack research reveals how crop roots penetrate hard soils

2021-01-14
Scientists have discovered a signal that causes roots to stop growing in hard soils which can be 'switched off' to allow them to punch through compacted soil - a discovery that could help plants to grow in even the most damaged soils. An international research team, led by scientists from the University of Nottingham's Future Food Beacon and Shanghai Jiao Tong University has discovered how the plant signal 'ethylene' causes roots to stop growing in hard soils, but after this signal is disabled, roots are able to push through compacted soil. The research has been published in Science. Hard (compacted) soils represent a major challenge facing modern agriculture that can reduce crop yields over 50% by reducing root growth, causing significant losses annually. Europe has over 33-million-hectares ...

Model analyzes how viruses escape the immune system

2021-01-14
CAMBRIDGE, MA -- One reason it's so difficult to produce effective vaccines against some viruses, including influenza and HIV, is that these viruses mutate very rapidly. This allows them to evade the antibodies generated by a particular vaccine, through a process known as "viral escape." MIT researchers have now devised a new way to computationally model viral escape, based on models that were originally developed to analyze language. The model can predict which sections of viral surface proteins are more likely to mutate in a way that enables viral escape, and it can also identify sections that are less likely to mutate, making them good targets ...

New state of matter in one-dimensional quantum gas

2021-01-14
As the story goes, the Greek mathematician and tinkerer Archimedes came across an invention while traveling through ancient Egypt that would later bear his name. It was a machine consisting of a screw housed inside a hollow tube that trapped and drew water upon rotation. Now, researchers led by Stanford University physicist Benjamin Lev have developed a quantum version of Archimedes' screw that, instead of water, hauls fragile collections of gas atoms to higher and higher energy states without collapsing. Their discovery is detailed in a paper published Jan. 14 in Science. "My expectation for ...

Measuring the belowground world

2021-01-14
If you asked people which group of animals is the most abundant on earth, hardly anyone would know the right answer. Ants? Fish? No, and not humans either. The answer is nematodes, also known as roundworms. Four out of five animals on earth belong to this group, and the reason hardly anyone is aware of the fact is that they live underground, invisible to us. Together with thousands of other soil organisms, they quietly, discreetly and constantly perform enormously important services for the world above them. The soil is one of the most species-rich habitats in existence. Living under one square meter ...

Quantum computers to study the functioning of the molecules of life

2021-01-14
The human body is like a construction site where hundreds of thousands of different molecular nanomachines, called proteins, are simultaneously at work. Each one of these biomolecules, which are chains of amino acids essential to living organisms, perform a different biological function, often in synergy with other proteins. During their formation (the folding process) or in the performance of their biological functions, proteins change their shape in a very specific way. In many cases it is possible to conduct experiments that provide images of proteins at near atomic resolution, but only when they are in the stable and biologically ...

The role of T cells in fighting cancer

2021-01-14
New research from CU Cancer Center member Jing Hong Wang, MD, PhD, and recent University of Colorado Immunology program graduate Rachel Woolaver, PhD, may help researchers develop more effective personalized immunotherapy for cancer patients. Working within Wang's specialty of cancer immunology and head and neck squamous cell carcinomas (HNSCCs), the researchers worked to establish a mouse model that would help them understand why some hosts' immune systems reject tumors easily, while others have a harder time doing so. Their research was published last week in the Journal for ImmunoTherapy of Cancer. "It's particularly interesting now because the field of cancer treatment has really been going in the direction of immunotherapy, ...

Exposure to violence takes a toll on the socioemotional well-being of Californians

2021-01-14
Researchers at the UC Davis Violence Prevention Research Program (VPRP) assessed the prevalence of exposure to violence, such as robbery or assault, and its impacts on the mental health and social functioning of California adults. Their study, published in the Journal of Interpersonal Violence, shows the far-reaching psychological effects an incident of gun violence can have on victims and those close to them. The study's findings are based on data from 2,558 adults who responded to the 2018 California Safety and Wellbeing Survey (CSaWS). CSaWS is an ongoing survey research project on firearm ownership and the consequences of exposure to violence in California. Responses were weighted to be statistically representative of the state's adult population. These ...

Berkeley Lab science snapshots

Berkeley Lab science snapshots
2021-01-14
Primer on Carbon Dioxide Removal Provides Vital Resource at Critical Time --By Julie Chao Scientists say that any serious plan to address climate change should include carbon dioxide removal (CDR) technologies and policies, which makes the newly launched CDR Primer an especially vital resource, says Berkeley Lab scientist Margaret Torn, one of about three dozen scientists who contributed to this document. "Atmospheric CO2 concentrations are already 50% over historic natural levels - 270 ppm (parts per million) in pre-industrial times vs 414 ppm today," said Torn. "To slow climate change and avoid its worst impacts, climate scientists tell ...

Population density and virus strains will affect how regions can resume normal life

2021-01-14
MADISON, Wis. -- As a new, apparently more transmissible version of the virus that causes COVID-19 has appeared in several countries, new research finds that the transmissibility of viral strains and the population density of a region will play big roles in how vaccination campaigns can help towns and cities return to more normal activities. The findings suggest that directing vaccines toward densely populated counties would help to interrupt transmission of the disease. Current vaccination distribution plans don't take density into account. Tony Ives at the University of Wisconsin-Madison and Claudio Bozzuto of the independent data research company Wildlife ...

Following the hops of disordered proteins could lead to future treatments of Alzheimer's disease

2021-01-14
Researchers from the University of Cambridge, the University of Milan and Google Research have used machine learning techniques to predict how proteins, particularly those implicated in neurological diseases, completely change their shapes in a matter of microseconds. They found that when amyloid beta, a key protein implicated in Alzheimer's disease, adopts a highly disordered shape, it actually becomes less likely to stick together and form the toxic clusters which lead to the death of brain cells. The results, reported in the journal Nature Computational Science, could aid in the future development of treatments ...

LAST 30 PRESS RELEASES:

HKU ecologists uncover significant ecological impact of hybrid grouper release through religious practices

New register opens to crown Champion Trees across the U.S.

A unified approach to health data exchange

New superconductor with hallmark of unconventional superconductivity discovered

Global HIV study finds that cardiovascular risk models underestimate for key populations

New study offers insights into how populations conform or go against the crowd

Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials

WashU researchers map individual brain dynamics

Technology for oxidizing atmospheric methane won’t help the climate

US Department of Energy announces Early Career Research Program for FY 2025

PECASE winners: 3 UVA engineering professors receive presidential early career awards

‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions

MSU researcher’s breakthrough model sheds light on solar storms and space weather

Nebraska psychology professor recognized with Presidential Early Career Award

New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration

Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins

From lab to field: CABBI pipeline delivers oil-rich sorghum

Stem cell therapy jumpstarts brain recovery after stroke

Polymer editing can upcycle waste into higher-performance plastics

Research on past hurricanes aims to reduce future risk

UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology

Panorama of our nearest galactic neighbor unveils hundreds of millions of stars

A chain reaction: HIV vaccines can lead to antibodies against antibodies

Bacteria in polymers form cables that grow into living gels

Rotavirus protein NSP4 manipulates gastrointestinal disease severity

‘Ding-dong:’ A study finds specific neurons with an immune doorbell

A major advance in biology combines DNA and RNA and could revolutionize cancer treatments

Neutrophil elastase as a predictor of delivery in pregnant women with preterm labor

NIH to lead implementation of National Plan to End Parkinson’s Act

Growth of private equity and hospital consolidation in primary care and price implications

[Press-News.org] Foraging humans, mammals and birds who live in the same place behave similarly