UTEP researchers make discoveries to better understand SARS-CoV-2 virus
2021-02-02
(Press-News.org) EL PASO, Texas - An effort led by Lin Li, Ph.D., assistant professor of physics at The University of Texas at El Paso, in collaboration with students and faculty from Howard University, has identified key variants that help explain the differences between the viruses that cause COVID-19 and Severe Acute Respiratory Syndrome (SARS).
A team comprised of researchers from UTEP and the historically Black research university in Washington, D.C., discovered valuable data in comparing the fundamental mechanisms of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and SARS-CoV-2 -- also known as COVID-19 -- to better understand how these viruses attack the human body. Their findings are published in an article titled "Spike Proteins of SARS-CoV and SARS-CoV-2 Utilize Different Mechanisms to Bind with Human ACE2" that recently appeared in the scientific journal Frontiers in Molecular Biosciences.
"We are very excited and interested in the timely work that Dr. Li and his collaborators have reported," said Robert Kirken, Ph.D., dean of UTEP's College of Science. "As the SARS-COV2 continues to evolve through its passage by infected humans, the rapid identification and assessment of these mutants using the research and testing approaches they have established will be critically important for the development of new vaccines and therapeutics."
In comparing the viruses, researchers found that both are very similar in sequence and almost identical in structure. Using computational approaches, they were also able to identify mutations of SARS-CoV that make SARS-CoV-2 significantly more contagious and prone to cause serious infections.
"We found that because of mutations, the binding from SARS-CoV-2 to the human cell is much stronger compared with SARS-CoV," Li said. "This might be one of the reasons why SARS-CoV-2 is spreading much faster and is difficult to control. SARS-CoV-2 also uses a much smarter strategy to attack the human cell than SARS-CoV. For example, when SARS-CoV infects or binds to the human cell, it uses several key residues or amino acids to do so, while SARS-CoV-2 uses more residues, making it more robust and easier to completely hijack the human cell.
"We identified the most important residues for SARS-CoV-2 to bind to the human cell. This type of data is key for drug development to cure or treat infections caused by these types of viruses. These fundamental rules and features can also be used for future disease control when perhaps 10 years from now, there's a SARS-CoV-3 or 4."
Researchers from both universities focused on examining one of the virus' four main proteins, known as the spike protein, that initiates infection to the human body. They discovered that from SARS-CoV to SARS-CoV-2 there is an interesting change in mechanism of the binding domain of the spike protein.
"The binding domain needs to flip out so that it can bind to the human cell, but we found some strange mutations that happened. Like the hinge of a door, the binding domain may affect the flip mechanism of SARS-CoV-2. It may be more flexible, making it easier to bind to the human cell," Li said.
The team included an interdisciplinary mix of undergraduate and graduate students, postdoctoral researchers and faculty from both UTEP and Howard University. Yixin Xie, a UTEP graduate student and research assistant, served as the paper's first author, and led the calculation and analysis portions of the project while working closely with other UTEP and Howard University students remotely due to the pandemic.
In the future, the goal of the team is to expand their research to study the mechanisms of all four proteins to better understand the inner workings of these viruses even more to help combat COVID-19 and related viruses.
INFORMATION:
The University of Texas at El Paso is one of the largest and most successful Hispanic-serving institutions in the country, with a student body that is 83% Hispanic. It enrolls nearly 25,000 students in 166 bachelor's, master's and doctoral programs in 10 colleges and schools. With more than $100 million in total annual research expenditures, UTEP is ranked in the top 5% of research institutions nationally and fifth in Texas for federal research expenditures at public universities.
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-02-02
CORVALLIS, Ore. - Extensive sea ice covered the world's oceans during the last ice age, which prevented oxygen from penetrating into the deep ocean waters, complicating the relationship between oxygen and carbon, a new study has found.
"The sea ice is effectively like a closed window for the ocean," said Andreas Schmittner, a climate scientist at Oregon State University and co-author on the paper. "The closed window keeps fresh air out; the sea ice acted as a barrier to keep oxygen from entering the ocean, like stale air in a room full of people. If you open the window, oxygen ...
2021-02-02
Amazon's search algorithm gives preferential treatment to books that promote false claims about vaccines, according to research by UW Information School Ph.D. student Prerna Juneja and Assistant Professor Tanu Mitra.
Meanwhile, books that debunk health misinformation appear lower in Amazon's search results, where they are less likely to be seen, the researchers wrote in a paper that was recently accepted to CHI, the top annual conference on human-computer interaction.
In their paper, Juneja and Mitra noted that Amazon has faced criticism for not regulating health-related products on its platform. They conducted audits to determine how much health misinformation is present in Amazon's recommendations ...
2021-02-02
The lockdowns and reduced societal activity related to the COVID-19 pandemic affected emissions of pollutants in ways that slightly warmed the planet for several months last year, according to new research led by the National Center for Atmospheric Research (NCAR).
The counterintuitive finding highlights the influence of airborne particles, or aerosols, that block incoming sunlight. When emissions of aerosols dropped last spring, more of the Sun's warmth reached the planet, especially in heavily industrialized nations, such as the United States and Russia, that normally pump high amounts of aerosols into the atmosphere.
"There was a big decline in emissions from the most polluting industries, and that had immediate, short-term effects on temperatures," said ...
2021-02-02
Yale researchers are developing a skin cancer treatment that involves injecting nanoparticles into the tumor, killing cancer cells with a two-pronged approach, as a potential alternative to surgery.
The results are published in the Proceedings of the National Academy of Sciences.
"For a lot of patients, treating skin cancer is much more involved than it would be if there was a way to effectively treat them with a simple procedure like an injection," said Dr. Michael Girardi, professor and vice chair of dermatology at Yale School of Medicine and senior author of the study. "That's always been a holy grail in dermatology -- to find a simpler way to treat skin cancers such as basal cell carcinoma and squamous cell carcinoma."
For the treatment, tumors are injected ...
2021-02-02
A new study from scientists of the Max Planck Institute for Evolutionary Biology in Plön, Germany, and the Chinese Academy of Sciences in Beijing shows that the potential genetic burden of mutations arising from retrogenes is significantly greater than originally thought.
Genetic information is stored in DNA and transcribed as mRNA. The mRNA is usually translated into proteins. However, it has long been known that mRNA can also be reverse transcribed to DNA and integrated back into the genome. Such cases are referred to as retrogenes. In an article, a team from the Max Planck Institute for ...
2021-02-02
When different groups of people come into contact, what's the key to motivating advantaged racial groups to join historically disadvantaged racial minority groups to strive for racial equality and social justice? It's a complex conundrum studied for years by social scientists like Linda Tropp, professor of social psychology at the University of Massachusetts Amherst.
Her latest research, published in the International Journal of Intercultural Relations, tested and supported Tropp and colleagues' proposition that having open communication about group differences is a crucial pathway.
While greater contact between racial groups is typically associated with less ...
2021-02-02
New drivers between the ages of 15 and 25 account for nearly half of the more than one million road deaths that occur worldwide each year, according to the World Health Organization. Educational programs often use fear-based messaging and films of crash scenes to reduce risky driving behavior among young people. But does this "scary" approach work?
A new study published in the journal Risk Analysis suggests that fear-based messaging fails to reduce risky driving behavior, while fear-based Virtual Reality (VR) films depicting a violent collision may actually lead young drivers to take more chances behind the wheel.
A team of psychologists led by University of Antwerp researcher Clara Alida Cutello, PhD, conducted a study of 146 students ...
2021-02-02
Are Gut Microbes the Key to Unlocking Anxiety
A mouse study suggests the genetic contribution to anxiety is partially mediated by the gut microbiome
By Greta Lorge
The prevalence of anxiety disorders, already the most common mental illness in many countries, including the U.S., has surged during the novel coronavirus pandemic. A study led by researchers in Berkeley Lab's Biosciences Area provides evidence that taking care of our gut microbiome may help mitigate some of that anxiety.
The team used a genetically heterogeneous lineage of mice known as the Collaborative Cross (CC) to probe connections among genes, gut microbiome ...
2021-02-02
A fascinating and crucial ability of biological tissue, such as muscle, is self-healing and self-strengthening in response to damage caused by external forces. Most human-made polymers, on the other hand, break irreversibly under enough mechanical stress, which makes them less useful for certain critical applications like manufacturing artificial organs. But what if we could design polymers that reacted chemically to mechanical stimuli and used this energy to enhance their properties?
This goal, which has proven to be a big challenge, is under the spotlight in the field of mechanochemistry. In a recent study published in Angewandte Chemie ...
2021-02-02
Tumors can be damaging to surrounding blood vessels and tissues even if they're benign. If they're malignant, they're aggressive and sneaky, and often irrevocably damaging. In the latter case, early detection is key to treatment and recovery. But such detection can sometimes require advanced imaging technology, beyond what is available commercially today.
For instance, some tumors occur deep inside organs and tissues, covered by a mucosal layer, which makes it difficult for scientists to directly observe them with standard methods like endoscopy (which inserts a small camera into a patient's body via a thin ...
LAST 30 PRESS RELEASES:
[Press-News.org] UTEP researchers make discoveries to better understand SARS-CoV-2 virus