PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Modern anti-cancer drugs work via tiny molecular motions

2021-02-03
(Press-News.org) Modern immunotherapeutic anti-cancer drugs support a natural mechanism of the immune system to inhibit the growth of cancer cells. They dock onto a specific receptor of the killer cell and prevent it from being switched off by the cancer cells. This is a complex molecular process, which is known but has not yet been fully understood. In a molecular dynamics study conducted by the group led by medical information scientist Wolfgang Schreiner and gynaecologists Heinz Kölbl and Georg Pfeiler from MedUni Vienna, working with biosimulation expert Chris Oostenbrink from the University of Natural Resources and Applied Life Sciences (Boku) Vienna, has now, for the first time, analysed this mechanism for the drugs nivolumab and pembrolizumab. It was found that tiny molecular motions are of key significance. The study has been published in the leading journal Cancers.

The human immune system protects the body against bacteria, viruses and damaged cells, such as cancer cells. Specialised immune cells, such as natural killer cells (NK cells), work together to identify and eliminate these threats. Sometimes these killer cells inadvertently target healthy cells, and this can result in severe autoimmune reactions. If this happens, the immune system deploys a safeguard measure, so-called "programmed cell death" (apoptosis). This is triggered when the endogenous surface molecule PD-L1 binds to the receptor expressed on the killer cell, the PD- molecule. In this process, the (immuno-checkpoint) receptor acts like an emergency off switch. If cells are attacked in error, they produce PD-L1 molecules and reach towards the killer cells, thus killing them. Cancer cells are also able to express PD-L1 and these bind to the checkpoint, thereby causing the killer cells to die and allowing the tumour to grow.

This is exactly where modern immunotherapeutic anti-cancer drugs (checkpoint inhibitors) come in. They resemble the surface molecule PD-L1 and bind to the PD-1 receptor, but the triggered mechanism is different, as the killer cells are not sent into cell death. Although the checkpoints are blocked, they are not activated. Cancer cells are no longer able to bind to the blocked receptors and the killer cells retain their ability to destroy cancer cells. Immunotherapy exploits this phenomenon, even though it was hitherto not fully understood exactly how the binding occurred without a switching process.

Wolfgang Schreiner from the Center for Medical Statistics, Informatics and Intelligent Systems at MedUni Vienna's Institute of Biosimulation and Bioinformatics, gynaecologists Georg Pfeiler and Heinz Kölbl, who is also Director of MedUni Vienna's Department of Obstetrics and Gynecology, and Chris Oostenbrink from Boku Vienna, have now investigated the key differences between the natural PD-L1 and the drugs used for treating various cancers such as breast cancer, lung cancer and melanoma in a molecular dynamics model by means of computer simulation. The motions of individual atoms and their reciprocal influence were calculated and mathematically analysed on the "supercomputer" belonging to Vienna Scientific Cluster (VSC). In this way it was possible to identify the smallest differences in the molecular motions between the natural molecule PD-L1 and those of the drugs.

Schreiner explains: "One can virtually make a precise mathematical assessment of the "facial expressions" of the molecules in slow motion, up close and personal. It was found that some loops of the PD-1 molecule deform in a different way, depending on their binding partner." These small differences would be directed inside the killer cell by the PD-1 molecule and produce the desired effect, namely that, although the drugs would bind to the receptor, they would not activate it like the natural surface molecule PD-L1.

What initially appears to be a slight difference is actually the basis for our continually growing understanding of cellular processes. The more we know about these, the more specific we can be in the development of checkpoint inhibitors. Research findings of this kind are highly promising, particularly in the area of gynaecological oncology, says Pfeiler: "Of course, checkpoint inhibitors can only work if the corresponding surface molecules (PD-1, PDL-1) that are to be inhibited, are actually expressed. This therapy is then a good option for triple negative breast cancer, for example. Interestingly, to date, only the expression of PDL-1 has been observed pre-therapeutically but not the expression of PD-1. This raises manifold research questions in terms of precision medicine."

INFORMATION:



ELSE PRESS RELEASES FROM THIS DATE:

European hibernating bats cope with white-nose syndrome which kills North American bats

European hibernating bats cope with white-nose syndrome which kills North American bats
2021-02-03
What are the reasons for such a contrast in outcomes? A scientist team led by the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW) has now analysed the humoral innate immune defence of European greater mouse-eared bats to the fungus. In contrast to North American bats, European bats have sufficient baseline levels of key immune parameters and thus tolerate a certain level of infection throughout hibernation. The results are published in the journal "Developmental and Comparative Immunology". During infections caused by Pseudogymnoascus destructans (Pd), North American bats arouse frequently from ...

Thanks to machine learning, the future of catalyst research is now!

Thanks to machine learning, the future of catalyst research is now!
2021-02-03
To date, research in the field of combinatorial catalysts has relied on serendipitous discoveries of catalyst combinations. Now, scientists from Japan have streamlined a protocol that combines random sampling, high-throughput experimentation, and data science to identify synergistic combinations of catalysts. With this breakthrough, the researchers hope to remove the limits placed on research by relying on chance discoveries and have their new protocol used more often in catalyst informatics. Catalysts, or their combinations, are compounds that significantly lower the energy required to drive chemical reactions to completion. In the field of "combinatorial catalyst design," the requirement of synergy--where one component ...

Life changes influence physical activity

Life changes influence physical activity
2021-02-03
Life changes influence the amount of physical activity in a person, according to a recent study by the University of Jyväskylä. The birth of children and a change of residence, marital status and place of work all influence the number of steps of men and women in different ways. For women, having children, getting a job and moving from town to the countryside reduce everyday exercise. A study conducted by the Faculty of Sports & Health Sciences found that the birth of the first child significantly reduces the number of everyday steps in women. As children grow, women's aerobic steps, in turn, increase. Although the birth of children did not have a statistically significant effect on the number of steps in men, changes were also observed ...

From waste heat to electrical power: A new generation of thermomagnetic generators

From waste heat to electrical power: A new generation of thermomagnetic generators
2021-02-03
Use of waste heat contributes largely to sustainable energy supply. Scientists of Karlsruhe Institute of Technology (KIT) and T?hoku University in Japan have now come much closer to their goal of converting waste heat into electrical power at small temperature differences. As reported in Joule, electrical power per footprint of thermomagnetic generators based on Heusler alloy films has been increased by a factor of 3.4. (DOI: 10.1016/j.joule.2020.10.019) Many technical processes only use part of the energy consumed. The remaining fraction leaves the system ...

UBC study highlights the best style and fabrics for COVID-19 face masks

UBC study highlights the best style and fabrics for COVID-19 face masks
2021-02-03
In the race to stop the spread of COVID-19, a three-layer cloth mask that fits well can effectively filter COVID particles, says a group of UBC researchers. After testing several different mask styles and 41 types of fabrics, they found that a mask consisting of two layers of low-thread-count quilting cotton plus a three-ply dried baby wipe filter was as effective as a commercial non-surgical mask at stopping particles--and almost as breathable. The cloth masks filtered out up to 80 per cent of 3-micron particles, and more than 90 per cent of 10-micron particles. "We focused on particles larger than one micron because these are likely most important to COVID-19 transmission," explains researcher Dr. Steven Rogak, a professor of mechanical engineering who ...

Pollinator host-switches and fig hybridization dominate fig-wasp coevolution

Pollinator host-switches and fig hybridization dominate fig-wasp coevolution
2021-02-03
The genus Ficus (figs) and their agaonid pollinating fig wasps are a classic example of coevolution. It represents perhaps the most extreme and ancient (about 75 million years) obligate pollination mutualism known. Previous studies have suggested that pollinator host-switching and hybridization existed in some fig taxa with genetic evidence based on relatively few genes. However, those cases were mainly treated as rare exceptions, and strict-sense coevolution was still treated as the dominate coevolution model for the codiversification of this "extreme" obligate pollination system with high species richness. Together with colleagues from 11 institutions from home and abroad, researchers from the Xishuangbanna Tropical Botanical ...

Unraveling the mystery of Gao, a protein implicated in movement disorders

2021-02-03
Scientists at Scripps Research have clarified the workings of a mysterious protein called Gαo, which is one of the most abundant proteins in the brain and, when mutated, causes severe movement disorders. The findings, which appear in Cell Reports, are an advance in the basic understanding of how the brain controls muscles and could lead to treatments for children born with Gαo-mutation movement disorders. Such conditions--known as GNAO1-related neurodevelopmental disorders--were discovered only in the past decade, and are thought to affect at least hundreds of children around the world. Children with the disease suffer from severe developmental ...

Novel 3D printed stents deliver breakthrough treatment for oesophageal cancer

Novel 3D printed stents deliver breakthrough treatment for oesophageal cancer
2021-02-03
World-first 3D printed oesophageal stents developed by the University of South Australia could revolutionise the delivery of chemotherapy drugs to provide more accurate, effective and personalised treatment for patients with oesophageal cancer. Fabricated from polyurethane filament and incorporating the chemotherapy drug 5-fluorouracil (5-FU), the new oesophageal stents are the first to contain active pharmaceutical ingredients within their matrix . Their unique composition allows them to deliver up to 110 days of a sustained anti-cancer medication directly to the cancer site, restricting further tumour growth. Importantly, the capabilities of 3D printing enabling rapid creation of individually tailored stents with patient-specific geometries and drug dosages. PhD ...

Digital health divide runs deep in older racial and ethnic minorities

Digital health divide runs deep in older racial and ethnic minorities
2021-02-03
The COVID-19 pandemic is a great example of the importance of access to the Internet and to digital health information. Unfortunately, historical disparities in health care appear to be reflected in computer ownership, access to the Internet and use of digital health information. However, few studies have qualitatively explored reasons for digital health information disparity, especially in older adults. A study led by Florida Atlantic University's Christine E. Lynn College of Nursing in collaboration with the Dana-Farber Cancer Institute and the University of Massachusetts Medical ...

Huge methane emission rise follows extreme rainfall in East Africa

2021-02-03
A 30-year high in East African rainfall during 2018 and 2019 resulted in rising water levels and widespread flooding. The new study shows that emissions of methane - the second most important greenhouse gas - from flooded East African wetlands were substantially larger following these extreme rainfall events. The study, led by Dr Mark Lunt from the University of Edinburgh's School of GeoSciences, used data from two different satellites in combination with an atmospheric model to evaluate methane emissions from East Africa. This included data from the European TROPOMI satellite instrument, launched in 2017, which provides information about atmospheric methane at ...

LAST 30 PRESS RELEASES:

Survey of 12 European countries reveals the best and worst for smoke-free homes

First new treatment for asthma attacks in 50 years

Certain HRT tablets linked to increased heart disease and blood clot risk

Talking therapy and rehabilitation probably improve long covid symptoms, but effects modest

Ban medical research with links to the fossil fuel industry, say experts

Different menopausal hormone treatments pose different risks

Novel CAR T cell therapy obe-cel demonstrates high response rates in adult patients with advanced B-cell ALL

Clinical trial at Emory University reveals twice-yearly injection to be 96% effective in HIV prevention

Discovering the traits of extinct birds

Are health care disparities tied to worse outcomes for kids with MS?

For those with CTE, family history of mental illness tied to aggression in middle age

The sound of traffic increases stress and anxiety

Global food yields have grown steadily during last six decades

Children who grow up with pets or on farms may develop allergies at lower rates because their gut microbiome develops with more anaerobic commensals, per fecal analysis in small cohort study

North American Early Paleoindians almost 13,000 years ago used the bones of canids, felids, and hares to create needles in modern-day Wyoming, potentially to make the tailored fur garments which enabl

Higher levels of democracy and lower levels of corruption are associated with more doctors, independent of healthcare spending, per cross-sectional study of 134 countries

In major materials breakthrough, UVA team solves a nearly 200-year-old challenge in polymers

Wyoming research shows early North Americans made needles from fur-bearers

Preclinical tests show mRNA-based treatments effective for blinding condition

Velcro DNA helps build nanorobotic Meccano

Oceans emit sulfur and cool the climate more than previously thought

Nanorobot hand made of DNA grabs viruses for diagnostics and blocks cell entry

Rare, mysterious brain malformations in children linked to protein misfolding, study finds

Newly designed nanomaterial shows promise as antimicrobial agent

Scientists glue two proteins together, driving cancer cells to self-destruct

Intervention improves the healthcare response to domestic violence in low- and middle-income countries

State-wide center for quantum science: Karlsruhe Institute of Technology joins IQST as a new partner

Cellular traffic congestion in chronic diseases suggests new therapeutic targets

Cervical cancer mortality among US women younger than age 25

Fossil dung reveals clues to dinosaur success story

[Press-News.org] Modern anti-cancer drugs work via tiny molecular motions