PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Dartmouth-invented technology allows doctors to see beam field during radiation treatment

Cherenkov imaging cameras pioneered at Dartmouth-Hitchcock's Norris Cotton Cancer Center allow radiation oncologists to visualize external beam field, improving quality, precision and patient safety during radiation therapy.

2021-02-05
(Press-News.org) LEBANON, NH - Dartmouth's and Dartmouth-Hitchcock's Norris Cotton Cancer Center (NCCC) is the first cancer center in the world to install BeamSite Cherenkov imaging cameras in its radiotherapy treatment rooms. The camera system, invented, validated and commercialized by entrepreneurs from NCCC and Dartmouth spinoff biomed tech company, DoseOptics, LLC, captures imaging and real-time video of the beam directly on the patient, allowing the radiation oncology team to visualize treatment delivery.

Cherenkov imaging makes radiation treatment a visual process. The Cherenkov effect occurs when photon or electron radiation beams interact with tissue, such as skin, producing a small light emission from the surface. BeamSite cameras can capture images of the treatment-beam shapes in real time, as well as show levels of intensity that are proportional to the radiation dose. These visual data can be used to verify both accuracy of dose and of beam delivery at each daily treatment, a verification not possible using standard quality assurance measures.

"Cherenkov imaging provides visualization of the radiation therapy treatment, so that the treatment team can see everything, and make adjustments when unexpected things happen," explains Brian Pogue, PhD, co-director of the Translational Engineering in Cancer Research Program at NCCC, MacLean Professor of Engineering Sciences at Dartmouth Engineering and co-founder of DoseOptics, LLC. A joint engineering and oncology team reviewed events recorded in their Cherenkov imaging study over the course of a few years, during which they documented incidents when radiotherapy delivery was not ideal and the adjustments made to rectify. Their findings, "Initial Clinical Experience of Cherenkov Imaging in External Beam Radiation Therapy Identifies Opportunities to Improve Treatment Delivery," have been published in The International Journal of Radiation Oncology, Biology, Physics.

There were a total of 64 patients in the study, under the supervision of radiation oncologist and lead author Lesley Jarvis, MD, PhD, Member of NCCC's Translational Engineering in Cancer Research Program and Associate Professor of Medicine at the Geisel School of Medicine at Dartmouth. The patients were receiving treatment for breast cancer, sarcoma, lymphoma and other cancers. Six patients were found to indicate that adjustments would have improved treatment, such as stray radiation dose exposure to the opposite breast, arm or chin during breast cancer treatments. The imaging system was also used to identify when inadvertent dose was not an issue, such as confirming no unintended exposure of the opposite leg during an extremity sarcoma treatment.

Radiation therapy is a repetitive procedure given to patients daily for about 30 days. Setting patients up on the treatment couch and daily alignment of the beam is a complex process. Beyond positional complications, the therapy team has to leave the room when the beam is on, so if anything happens during delivery, problem-solving tools are very limited. National statistics show that incidents of incorrect delivery might occur on a level of about 1%. In a busy clinic, this could mean one patient per week. "Normally the treatments are just fine," says Pogue. "However, if you cannot see where the beam is, then it is a blind treatment, and the interaction between patient and therapy team is just less natural than it could be if the treatment was visual."

NCCC is currently the only cancer center in the world with regular use of Cherenkov imaging in all radiotherapy treatments, and was uniquely positioned for clinical research teams to test out these cameras for the planned study. Cherenkov imaging cameras have been installed in most linear accelerators within Dartmouth-Hitchcock, providing an extra level of safety during each patient's therapy session. "Cherenkov cameras mounted inside the radiotherapy treatment rooms give us the ability to simply see the treatment and provide an intuitive guide to therapists that we otherwise wouldn't have had," says Pogue. "This is a terrific tool for tracking what happens each day and in each treatment, and for improving the quality of radiotherapy delivery."

DoseOptics' technology was developed through research at Dartmouth by Dartmouth faculty, who then licensed the product to the company. Pioneered at Dartmouth-Hitchcock, it is now expanding to other cancer centers. Since DoseOptics, LLC, received FDA clearance to market BeamSite in December of 2020, the team hopes all radiation oncology clinics will introduce the technology to their programs. "Clinics should have all the tools available to them to ensure that each treatment for each patient is accurate, and to be able to quickly notice issues and fix them," says Pogue.

INFORMATION:

Brian W. Pogue, PhD, is Co-Director of the Translational Engineering in Cancer Research Program at Dartmouth's and Dartmouth-Hitchcock's Norris Cotton Cancer Center, MacLean Professor of Engineering at Dartmouth Engineering, Professor of Surgery at Geisel School of Medicine at Dartmouth, and President and Co-Founder of DoseOptics, LLC, which develops camera systems and software for radiotherapy imaging of Cherenkov light for dosimetry. His research interests include optics in medicine, biomedical imaging to guide cancer therapy, molecular-guided surgery, dose imaging in radiation therapy, Cherenkov light imaging, image-guided spectroscopy of cancer, photodynamic therapy, and modeling of tumor pathophysiology and contrast.

About Norris Cotton Cancer Center Norris Cotton Cancer Center, located on the campus of Dartmouth-Hitchcock Medical Center (DHMC) in Lebanon, NH, combines advanced cancer research at Dartmouth College's Geisel School of Medicine in Hanover, NH with the highest level of high-quality, innovative, personalized, and compassionate patient-centered cancer care at DHMC, as well as at regional, multi-disciplinary locations and partner hospitals throughout NH and VT. NCCC is one of only 51 centers nationwide to earn the National Cancer Institute's prestigious "Comprehensive Cancer Center" designation, the result of an outstanding collaboration between DHMC, New Hampshire's only academic medical center, and Dartmouth College. Now entering its fifth decade, NCCC remains committed to excellence, outreach and education, and strives to prevent and cure cancer, enhance survivorship and to promote cancer health equity through its pioneering interdisciplinary research. Each year the NCCC schedules 61,000 appointments seeing nearly 4,000 newly diagnosed patients, and currently offers its patients more than 100 active clinical trials.

About Dartmouth-Hitchcock Health Dartmouth-Hitchcock Health (D-HH), New Hampshire's only academic health system and the state's largest private employer, serves a population of 1.9 million across northern New England. D-H provides access to more than 2,000 providers in almost every area of medicine, delivering care at its flagship hospital, Dartmouth-Hitchcock Medical Center (DHMC) in Lebanon, NH. DHMC was named again in 2020 as the #1 hospital in New Hampshire by U.S. News & World Report, and recognized for high performance in 9 clinical specialties and procedures. Dartmouth-Hitchcock also includes the Norris Cotton Cancer Center, one of only 51 NCI-designated Comprehensive Cancer Centers in the nation; the Children's Hospital at Dartmouth-Hitchcock, the state's only children's hospital; affiliated member hospitals in Lebanon, Keene, and New London, NH, and Windsor, VT, and Visiting Nurse and Hospice for Vermont and New Hampshire; and 24 Dartmouth-Hitchcock clinics that provide ambulatory services across New Hampshire and Vermont. The D-H system trains nearly 400 residents and fellows annually, and performs world-class research, in partnership with the Geisel School of Medicine at Dartmouth and the White River Junction VA Medical Center in White River Junction, VT.



ELSE PRESS RELEASES FROM THIS DATE:

UTA engineers develop programming technology to transform 2D materials into 3D shapes

UTA engineers develop programming technology to transform 2D materials into 3D shapes
2021-02-05
University of Texas at Arlington researchers have developed a technique that programs 2D materials to transform into complex 3D shapes. The goal of the work is to create synthetic materials that can mimic how living organisms expand and contract soft tissues and thus achieve complex 3D movements and functions. Programming thin sheets, or 2D materials, to morph into 3D shapes can enable new technologies for soft robotics, deployable systems, and biomimetic manufacturing, which produces synthetic products that mimic biological processes. Kyungsuk Yum, an associate professor in the Materials ...

Ensuring healthy family mealtimes is important - and complicated

2021-02-05
URBANA, Ill. ¬- Mealtimes are a central aspect of family life, affecting the health and wellbeing of both children and adults. Although the benefits of healthy mealtimes are straightforward, helping all families realize those benefits is quite complicated, new research from University of Illinois shows. The study highlights ways in which some solutions - such as an exclusive focus on improving food access or on improving mealtime preparation and organization skills - may be less effective if done in isolation, says Allen Barton, assistant professor in the Department of Human Development and Family Studies at ...

How blood and lymph vessels remain separated after development

How blood and lymph vessels remain separated after development
2021-02-05
Researchers from Kumamoto University (Japan) have clarified the mechanism by which blood and lymph vessels remain segregated from one another after development. The characteristics and structures of these two vessel types are very similar, and how they maintain separation has remained unexplained for many years. In this study, researchers found that the molecule Folliculin (FLCN) in vascular endothelial cells acts as a gatekeeper to maintain that separation. Blood and lymphatic vessels form independent networks until the final confluence at the left and right venous angles in the neck. Blood vessels act as a pipeline that ...

Signs of burnout can be detected in sweat

2021-02-05
We've all felt stressed at some point, whether in our personal or professional lives or in response to exceptional circumstances like the COVID-19 pandemic. But until now there has been no way to quantify stress levels in an objective manner. That could soon change thanks to a small wearable sensor developed by engineers at EPFL's Nanoelectronic Devices Laboratory (Nanolab) and Xsensio. The device can be placed directly on a patient's skin and can continually measure the concentration of cortisol, the main stress biomarker, in the patient's sweat. Cortisol: A double-edged sword Cortisol is a steroid hormone ...

Biosensors to detect P. jirovecii, responsible for Pneumocystis pneumonia

Biosensors to detect P. jirovecii, responsible for Pneumocystis pneumonia
2021-02-05
The group led by Dr. Enrique J. Calderón - "Clinical Epidemiology and Vascular Risk" at the Institute of Biomedicine of Seville - IBiS/University Hospitals Virgen del Rocío and Macarena/CSIC/University of Seville, also a member of CIBERESP, participated in a project with researchers from CIBER-BBN, in which they developed systems to detect Pneumocystis jirovecii, an atypical fungus responsible for very severe pneumonia in immunosuppressed patients. The results have been published in the journals Nanomaterials and Journal of Fungi, and are the fruit of collaboration with the CIBER-BBN groups led by Dr. Laura Lechuga, ...

In-silico modelling helps with the integrated study of the intervertebral disc in health and disease

2021-02-05
The spinal column consists of 24 vertebrae that provide axial support to the torso and protection to the spinal cord that runs through its central cavity. The vertebrae are connected by means of intervertebral discs. These discs are highly hydrated, flexible and highly mechanically resistant. They allow the column its flexibility and act as shock absorbers during daily activities such as walking, running and in impact situations, such as jumping. These unique features are made possible by the discs' tissue composition and structure. At its centre, there is a gel-like ...

Chinese scientists use knowledge from climate system modeling to develop a global prediction system for the COVID-19 pandemic

Chinese scientists use knowledge from climate system modeling to develop a global prediction system for the COVID-19 pandemic
2021-02-05
At the time of writing, coronavirus disease 2019 (COVID-19) is seriously threatening human lives and health throughout the world. Before effective vaccines and specific drugs are developed, non-pharmacological interventions and numerical model predictions are essential. To this end, a group led by Professor Jianping Huang from Lanzhou University, China, developed the Global Prediction System of the COVID-19 Pandemic (GPCP). Jianping Huang is a Professor in the College of Atmospheric Sciences and a Director of the Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, China. He has for a long time been dedicated to studying ...

Mathematics developed new classes of stellar dynamics systems solutions

Mathematics developed new classes of stellar dynamics systems solutions
2021-02-05
The Vlasov-Poisson equations describe many important physical phenomena such as the distribution of gravitating particles in the interstellar space, high-temperature plasma kinetics, and the Landau damping effect. A joint team of scientists from the Mathematical Institute of RUDN University and the Mathematical Institute of the University of Munich suggested a new method to obtain stationary solutions for a system of Vlasov-Poisson equations in a three-dimensional case. The obtained solutions describe the phenomena of stellar dynamics. The results of the study were published in the ...

Climate change may have driven the emergence of SARS-CoV-2

Climate change may have driven the emergence of SARS-CoV-2
2021-02-05
Global greenhouse gas emissions over the last century have made southern China a hotspot for bat-borne coronaviruses, by driving growth of forest habitat favoured by bats. A new study published today in the journal Science of the Total Environment provides the first evidence of a mechanism by which climate change could have played a direct role in the emergence of SARS-CoV-2, the virus that caused the COVID-19 pandemic. The study has revealed large-scale changes in the type of vegetation in the southern Chinese Yunnan province, and adjacent regions in Myanmar and Laos, over the last century. Climatic changes ...

Nehandertals' gut microbiota and the bacteria helping our health

Nehandertals gut microbiota and the bacteria helping our health
2021-02-05
Neanderthals' gut microbiota already included some beneficial micro-organisms that are also found in our own intestine. An international research group led by the University of Bologna achieved this result by extracting and analysing ancient DNA from 50,000-year-old faecal sediments sampled at the archaeological site of El Salt, near Alicante (Spain). Published in Communication Biology, their paper puts forward the hypothesis of the existence of ancestral components of human microbiota that have been living in the human gastrointestinal tract since before the separation between the Homo Sapiens and Neanderthals that occurred more than 700,000 years ago. "These results allow us to understand which components of the human gut microbiota ...

LAST 30 PRESS RELEASES:

Unlicensed retailers provide youths with easy access to cannabis in New York City

Scientists track evolution of pumice rafts after 2021 underwater eruption in Japan

The future of geothermal for reliable clean energy

Study shows end-of-life cancer care lacking for Medicare patients

Scented wax melts may not be as safe for indoor air as initially thought, study finds

Underwater mics and machine learning aid right whale conservation

Solving the case of the missing platinum

Glass fertilizer beads could be a sustained nutrient delivery system

Biobased lignin gels offer sustainable alternative for hair conditioning

Perovskite solar cells: Thermal stresses are the key to long-term stability

University of Houston professors named senior members of the National Academy of Inventors

Unraveling the mystery of the missing blue whale calves

UTA partnership boosts biomanufacturing in North Texas

Kennesaw State researcher earns American Heart Association award for innovative study on heart disease diagnostics

Self-imaging of structured light in new dimensions

Study highlights successes of Virginia’s oyster restoration efforts

Optimism can encourage healthy habits

Precision therapy with microbubbles

LLM-based web application scanner recognizes tasks and workflows

Pattern of compounds in blood may indicate severity of gestational hypertension and preeclampsia

How does innovation policy respond to the challenges of a changing world?

What happens when a diet targets ultra-processed foods?

University of Vaasa, Finland, conducts research on utilizing buildings as energy sources

Stealth virus: Zika virus builds tunnels to covertly infect cells of the placenta

The rising tide of sand mining: a growing threat to marine life

Contemporary patterns of end-of-life care among Medicare beneficiaries with advanced cancer

Digital screen time and nearsightedness

Postoperative weight loss after anti-obesity medications and revision risk after joint replacement

New ACS research finds low uptake of supportive care at the end-of-life for patients with advanced cancer

New frailty measurement tool could help identify vulnerable older adults in epic

[Press-News.org] Dartmouth-invented technology allows doctors to see beam field during radiation treatment
Cherenkov imaging cameras pioneered at Dartmouth-Hitchcock's Norris Cotton Cancer Center allow radiation oncologists to visualize external beam field, improving quality, precision and patient safety during radiation therapy.