PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

3D-printed spectrometer on a 100 x100 μm² footprint

3D-printed spectrometer on a 100 x100 μm² footprint
2021-02-08
(Press-News.org) Femtosecond direct laser writing as a 3D printing technology has been one of the key building blocks for miniaturization in modern times. It has transformed the field of complex microoptics since the early 2000s. Especially medical engineering and consumer electronics as vastly growing fields benefit from these developments. It is now possible to create robust, monolithic and nearly perfectly aligned freeform optical systems on almost arbitrary substrates such as image sensors or optical fibers. Simultaneously, the miniaturisation of spectroscopic measurement devices has been advanced, for instance based on quantum dot or nanowire technology. These are based on computational approaches, which have the drawback of being calibration sensitive and require complex reconstruction algorithms.

In a new paper published in Light: Advanced Manufacturing, a team of scientists, led by Professor Alois Herkommer from the Institute of Applied Optics and Professor Giessen from the 4th Physics Institute, University of Stuttgart, Germany, have demonstrated an angle-insensitive 3D-printed miniature spectrometer with a direct separated spatial-spectral response. It has a volume of less than 100 × 100 × 300 μm³. The design is based on a classical grating spectrometer and was fabricated via two-photon direct laser writing combined with a super-fine inkjet process. Its tailored and chirped high-frequency grating enables strongly dispersive behavior. The miniature spectrometer features a wavelength range in the visible from 490 nm to 690 nm. It has a spectral resolution of 9.2 ± 1.1 nm at 532 nm and 17.8 nm ± 1.7 nm at a wavelength of 633 nm. Leading author Andrea Toulouse assesses the potential as:

"With its volume of less than 100 × 100 × 300 μm³ we explore a whole new size range for direct spectrometers. An order of magnitude this small could only be realised by computational approaches until now. In contrast, we translate the spectrum directly into a spatially encoded intensity signal which can be read out with a commercial monochromatic image sensor."

"For 3D-printed microoptics, the complexity of the optical design marks an innovation. Refractive, diffractive and spatially filtering elements have never been combined in such a small volume to create a complex and monolithic measurement system."

"Our spectrometer could be fabricated directly on a miniature image sensor as the tip of a distal chip endoscope. This way, regions in the human body could be examined with extremely high bending radii that were not accessible before" the scientists forecast. "It could also be an interesting approach for hyperspectral imaging where the spectrometer would be used as a unit cell (macro pixel). The redistribution of spectral energy instead of high-loss Fabry-Perot-filtering could thus enable highly efficient hyperspectral imaging sensors. The ever-growing world population could benefit from such a camera if it was used for spectral mapping in precision farming, for instance."

INFORMATION:


[Attachments] See images for this press release:
3D-printed spectrometer on a 100 x100 μm² footprint

ELSE PRESS RELEASES FROM THIS DATE:

Silicon waveguides move us closer to faster, light-based logic circuits

Silicon waveguides move us closer to faster, light-based logic circuits
2021-02-08
For decades, the speed of our computers has been growing at a steady pace. The processor of the first IBM PC released 40 years ago, operated at a rate of roughly 5 million clock cycles per second (4.77 MHz). Today, the processors in our personal computers run around 1000 times faster. However, with current technology, they're not likely to get any faster than that. For the last 15 years, the clock rate of single processor cores has stalled at a few Gigahertz (1 Gigahertz = 1 billion clock cycles per second). And the old and tested approach of cramming ...

An end to invasive biopsies?

An end to invasive biopsies?
2021-02-08
In diagnostic medicine, biopsies, where a sample of tissue is extracted for analysis, is a common tool for the detection of many conditions. But this approach has several drawbacks - it can be painful, doesn't always extract the diseased tissue, and can only be used in a sufficiently advanced disease stage, making it, in some cases, too late for intervention. These concerns have encouraged researchers to find less invasive and more accurate options for diagnoses. Professor Nir Friedman and Dr. Ronen Sadeh of the Life Sciences Institute and School of Computer Engineering have published a study in Nature Biotechnology that shows how a wide range of diseases can be detected through a simple ...

Two-phase material with surprising properties

Two-phase material with surprising properties
2021-02-08
In certain materials, electrical and mechanical effects are closely linked: for example, the material may change its shape when an electrical field is applied or, conversely, an electrical field may be created when the material is deformed. Such electromechanically active materials are very important for many technical applications. Usually, such materials are special, inorganic crystals, which are hard and brittle. For this reason, so-called ferroelectric polymers are now being used. They are characterised by the fact that their polymer chains exist simultaneously in two different microstructures: some areas are strongly ...

Study describes the diversity of genetic changes that cause inherited kidney disease

2021-02-08
A study has described genetic changes in patients with the most common form of hereditary kidney disease that affects an estimated 12.5 million people worldwide. The research, which focussed on Polycystic Kidney Disease (PKD) in Ireland, provides insights into PKD that will assist doctors and patients in the management of this of inherited condition. The study, led by researchers from the RCSI University of Medicine and Health Sciences, is published in the European Journal of Human Genetics. In the research, a cohort of 169 patients with PKD in Ireland were analysed. The genetic changes were identified in up ...

Study identifies 'post-traumatic growth' emerging from COVID-19 lockdowns

2021-02-08
Results from a new study which draws on survey data collected during the peak of the first wave of the pandemic suggests that being forced to slow down life, as a consequence of lockdown, has had significant, positive impacts for many people and their families. The research, recently published in the British Journal of Psychiatry from a team at the University of Bath with international colleagues, analysed survey results from 385 caregivers of children aged 6-16 both in the UK and Portugal. Individuals completed an online questionnaire between 1 May 2020 and 27 June 2020. This cohort had ...

Ditching the car for walking or biking just one day a week cuts carbon footprint

2021-02-08
Swapping the car for walking, cycling and e-biking even just one day a week makes a significant impact on personal carbon emissions in cities. 'Active transport' - cycling, e-biking or walking - can help tackle the climate crisis according to a new study led by the University of Oxford's Transport Studies Unit and including researchers from Imperial's Centre for Environmental Policy as part of the EU-funded project PASTA: Physical Activity Through Sustainable Transport Approaches. Meeting greenhouse gas emissions reduction targets requires a significant move away from motorised transport. The team found that shifting to active transport could save as ...

Iodine oxoacids formed in oceans have major impact on climate

Iodine oxoacids formed in oceans have major impact on climate
2021-02-08
Molecular iodine, a major emission from the ocean, can quickly convert to iodic oxoacids even under weak daylight conditions. These oxoacids lead rapidly to aerosol particles that significantly affect climate and human health. Iodine-containing vapors that are emitted from oceans are a major source of aerosol particles. "Despite their importance to the climate, the formation of marine particles has been poorly understood," says Siddharth Iyer, Postdoctoral Researcher in Aerosol Physics Laboratory at Tampere University. In this research, the formation of aerosol particles form from iodine-containing vapours under marine boundary layer conditions were studied. The experiments were carried out in the ultra-clean CLOUD chamber in CERN, where the nucleation and growth rates as well as ...

Cells are collective thinkers

2021-02-08
Cells, like humans, cast votes to make decisions as a group. But how do they know what to vote for? Researchers at the Francis Crick Institute and King's College London have uncovered how cells actively seek information in order to make faster and better collective decisions to coordinate the growth of new blood vessels. This provides a new basis for understanding intelligence in cells. The process of how cells precisely and quickly coordinate action when they create new tissue is complex. They must collectively decide which cells should take on specific jobs and ensure that not too ...

The quantum advantage: a novel demonstration

2021-02-08
Is a quantum machine really more efficient than a conventional machine for performing calculations? Demonstrating this 'advantage' experimentally is particularly complex and a major research challenge around the world1. Scientists from the CNRS2, the University of Edinburgh (Scotland) and the QC Ware, Corp., (France and USA) have just proved that a quantum machine can perform a given verification task in seconds when the same exercise would take a time equivalent to the age of the universe for a conventional computer. For this demonstration, they combined a complex interactive algorithm that solves a certain type of mathematical problem with limited information and a simple experimental photonics ...

Does Goal 7 Energy for All need a rethink?

2021-02-08
Goal 7 of the Sustainable Development Goals (SDGs) aims to ensure access to affordable, reliable, sustainable and modern energy for all by 2030. Yet according to new research by Copenhagen Business School the poor planning and execution of decarbonisation strategies in emerging markets challenges the aims of Goal 7. "In the effort to produce renewable energy and decarbonise their economies, emerging countries have neglected the effect on marginalised populations, which could ultimately prove unsustainable for all," says Assistant Professor Jacobo Ramirez from the ...

LAST 30 PRESS RELEASES:

Otago experts propose fiber as first new essential nutrient in 50 years

Auburn Physics PhD student earns prestigious DOE Fellowship

AI tool helps you learn how autistic communication works

To show LGBTQ+ support, look beyond Pride Month

Using artificial intelligence to understand how emotions are formed

Exposure to wildfire smoke late in pregnancy may raise autism risk in children

Breaking barriers in lymphatic imaging: Rice’s SynthX Center leads up to $18 million effort for ‘unprecedented resolution and safety’

Dhaval Jadav joins the SETI Institute Board to help spearhead novel science and technology approaches in the search for extraterrestrial life

Political writing retains an important and complex role in the national conversation, new book shows

Weill Cornell Medicine receives funding to develop diagnostic toolbox for lymphatic disease

It started with a cat: How 100 years of quantum weirdness powers today’s tech

McGill researchers identify a range of unexpected chemical contaminants in human milk

Physical therapy research highlights arthritis’ toll on the workforce — and the path forward

Biomedical and life science articles by female researchers spend longer under review

Forgetting in infants can be prevented in mice by blocking their brain’s immune cells

Blocking immune cells in the brain can prevent infant forgetting

AI-driven ultrafast spectrometer-on-a-chip: A revolution in real-time sensing

World enters “era of global water bankruptcy”; UN scientists formally define new post-crisis reality for billions

Innovations in spatial imaging could unlock higher wheat yields

A twitch in time? Quantum collapse models hint at tiny time fluctuations

Community water fluoridation not linked to lower birth weight, large US study finds

Stanford University’s Guosong Hong announced as inaugural recipient of the SPIE Biophotonics Discovery’s Impact of the Year Award

Ice, ice, maybe: There’s always a thin layer of water on ice — or is there?

Machine learning lends a helping ‘hand’ to prosthetics

Noninvasive brain scanning could send signals to paralyzed limbs

Community water fluoridation and birth outcomes

SGLT2 inhibitors vs GLP-1 receptor agonists for kidney outcomes in individuals with type 2 diabetes

Long-term exposure to air pollution and risk and prognosis of motor neuron disease

Five-year absolute risk–based and age-based breast cancer screening in the US

Study finds elevated alcohol involvement in suicides of lesbian, gay and bisexual women

[Press-News.org] 3D-printed spectrometer on a 100 x100 μm² footprint