PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Researchers produce tiny nanoparticles and reveal their inner structure for the first time

2021-02-08
(Press-News.org) Tiny nanoparticles can be furnished with dyes and could be used for new imaging techniques, as chemists and physicists at Martin Luther University Halle-Wittenberg (MLU) show in a recent study. The researchers have also been the first to fully determine the particles' internal structure. Their results were published in the renowned journal Angewandte Chemie.

Single-chain nanoparticles (SCNPs) are an attractive material for chemical and biomedical applications. They are created from just a single chain of molecules that folds into a particle whose circumference measures three to five nanometres. "Because they are so small, they can travel everywhere in the human body and be used for a wide variety of purposes," says Professor Wolfgang Binder from the Institute of Chemistry at MLU. As it is a new area of research, some questions still remain unanswered. Up until now, for example, the inner structure of the particles had only been assumed, but not finally resolved.

After Binder and his team developed new single-chain nanoparticles that could be used in medicine, they wanted to know more about their structure. "We concluded that the nanoparticles we developed must have a special, internal structure," says Binder. To establish this, he contacted colleagues from the departments of chemistry and physics at MLU. Using a combination of electron spin resonance and fluorescence spectroscopy, the scientists were able to visualise the structure of an SCNP for the first time. "They form a kind of nano-pocket that can protect a dye or other molecules," explains Binder. Their findings are in line with previous assumptions about the possible spatial structure within such tiny particles.

The aim of Binder's research group is to develop nanoparticles for diagnostic testing. However, producing the nanoparticles is a complex task. "They have to be virtually invisible to the body," explains Justus Friedrich Hoffmann, a PhD student in Binder's research group. They cannot be destroyed by the body's immune system and they must also have the right internal binding sites so that a dye or another molecule can be stored and protected. In addition, they have to be water-soluble so that they can be transported via the bloodstream. "They often form large clumps, but we have now been able to produce individual particles," says Hoffmann. They used a chemical trick to condense the chain into the desired form.

The dye, which is incorporated during the manufacturing process, is to be used for so-called photoacoustic imaging. The procedure represents an alternative to computer tomography but without the dangerous radiation. It allows one to look several centimetres deep into tissue from outside the body. Normally the dye is quickly destroyed by the body, says Binder. The tiny nanoparticles protect the dye, which could be used, for example, in the visualisation of tumours which it would enter via blood vessels.

SCNPs can be used in a wide variety of other applications, too. For instance, they could be used as nanoreactors in which chemical reactions take place.

INFORMATION:

The research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).



ELSE PRESS RELEASES FROM THIS DATE:

Marmoset monkeys have personalities too

Marmoset monkeys have personalities too
2021-02-08
In humans, differences in personalities have been evident since the ancient times. Personality in animals has long been ignored, but recently this question has received increasing research interest as it has been realized that personality has evolutionary and ecological significance. An international team of behavioral biologists from Austria, Brazil and the Netherlands, with Vedrana Å lipogor from the University of Vienna as leading author of the study, designed a set of tasks to assess personality of common marmosets. These results have just been published in American Journal of Primatology. Marmosets are small highly social New World monkeys that parallel humans in their social organization, as they live in cohesive ...

Tourism mainly responsible for marine litter on Mediterranean beaches

Tourism mainly responsible for marine litter on Mediterranean beaches
2021-02-08
Researchers from the Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona (ICTA-UAB) warn of the impact the current tourism model in the Mediterranean islands has on the production of marine litter on beaches, and recommend taking advantage of the situation generated by the Covid19 pandemic to rethink a new more sustainable model. The research, recently published in the journal Scientific Reports, shows that the recreational use of Mediterranean island beaches during the summer is responsible for up to 80% of the marine litter accumulating on those beaches, and generates huge amounts of microplastics through the fragmentation ...

New synthetic route for biofuel production

2021-02-08
A German-Chinese research team has found a new synthetic route to produce biofuel from biomass. The chemists converted the substance 5-hydroxymethylfurfural (HMF) produced from biomass into 2,5-dimethylfuran (DMF), which could be suitable as a biofuel. Compared to previous methods, they achieved a higher yield and selectivity under milder reaction conditions. The team led by Dr. Baoxiang Peng and Professor Martin Muhler from the Laboratory of Industrial Chemistry at Ruhr-Universität Bochum (RUB) and the group led by Professor Christof Hättig from the RUB Chair for Theoretical Chemistry described the method together with colleagues from Changzhou, ...

Efficiency limits of next-generation hybrid photovoltaic-thermal solar technology

Efficiency limits of next-generation hybrid photovoltaic-thermal solar technology
2021-02-08
Solar energy is one of the most abundant renewable energy sources, and effective solar technologies have great potential to alleviate the grand challenges of rising global energy demands, while reducing associated emissions. Solar energy is capable of satisfying the electrical and thermal-energy needs of diverse end-users by means of photovoltaic (PV) and solar thermal (ST) technologies, respectively. Recently, hybrid photovoltaic-thermal (PVT) concepts have been proposed that synergistically combine the benefits of PV and ST technologies, and are capable of generating both electricity and useful heat simultaneously from the same area and component. Spectral splitting is an emerging approach for designing high-performance PVT solar collectors, which employ advanced designs ...

New clues to how SARS-CoV-2 infects cells

2021-02-08
The molecular details of how SARS-CoV-2 enters cells and infects them are still not clear. Researchers at Uppsala University have tested the bioinformatic predictions made by another research group and have identified receptors that could be important players in the process. The results are presented in the journal Science Signaling and at the AAAS Annual Meeting held this week. The spike protein of SARS-CoV-2 binds the protein ACE2 on the outside of the human cell. This triggers a series of events that leads to invasion of the cell by the virus. The molecular details of this process have remained obscure ...

3D-printed spectrometer on a 100 x100 μm² footprint

3D-printed spectrometer on a 100 x100 μm² footprint
2021-02-08
Femtosecond direct laser writing as a 3D printing technology has been one of the key building blocks for miniaturization in modern times. It has transformed the field of complex microoptics since the early 2000s. Especially medical engineering and consumer electronics as vastly growing fields benefit from these developments. It is now possible to create robust, monolithic and nearly perfectly aligned freeform optical systems on almost arbitrary substrates such as image sensors or optical fibers. Simultaneously, the miniaturisation of spectroscopic measurement devices has been advanced, for instance based on quantum dot or nanowire technology. These are based on computational approaches, which have the drawback of ...

Silicon waveguides move us closer to faster, light-based logic circuits

Silicon waveguides move us closer to faster, light-based logic circuits
2021-02-08
For decades, the speed of our computers has been growing at a steady pace. The processor of the first IBM PC released 40 years ago, operated at a rate of roughly 5 million clock cycles per second (4.77 MHz). Today, the processors in our personal computers run around 1000 times faster. However, with current technology, they're not likely to get any faster than that. For the last 15 years, the clock rate of single processor cores has stalled at a few Gigahertz (1 Gigahertz = 1 billion clock cycles per second). And the old and tested approach of cramming ...

An end to invasive biopsies?

An end to invasive biopsies?
2021-02-08
In diagnostic medicine, biopsies, where a sample of tissue is extracted for analysis, is a common tool for the detection of many conditions. But this approach has several drawbacks - it can be painful, doesn't always extract the diseased tissue, and can only be used in a sufficiently advanced disease stage, making it, in some cases, too late for intervention. These concerns have encouraged researchers to find less invasive and more accurate options for diagnoses. Professor Nir Friedman and Dr. Ronen Sadeh of the Life Sciences Institute and School of Computer Engineering have published a study in Nature Biotechnology that shows how a wide range of diseases can be detected through a simple ...

Two-phase material with surprising properties

Two-phase material with surprising properties
2021-02-08
In certain materials, electrical and mechanical effects are closely linked: for example, the material may change its shape when an electrical field is applied or, conversely, an electrical field may be created when the material is deformed. Such electromechanically active materials are very important for many technical applications. Usually, such materials are special, inorganic crystals, which are hard and brittle. For this reason, so-called ferroelectric polymers are now being used. They are characterised by the fact that their polymer chains exist simultaneously in two different microstructures: some areas are strongly ...

Study describes the diversity of genetic changes that cause inherited kidney disease

2021-02-08
A study has described genetic changes in patients with the most common form of hereditary kidney disease that affects an estimated 12.5 million people worldwide. The research, which focussed on Polycystic Kidney Disease (PKD) in Ireland, provides insights into PKD that will assist doctors and patients in the management of this of inherited condition. The study, led by researchers from the RCSI University of Medicine and Health Sciences, is published in the European Journal of Human Genetics. In the research, a cohort of 169 patients with PKD in Ireland were analysed. The genetic changes were identified in up ...

LAST 30 PRESS RELEASES:

Reality check: making indoor smartphone-based augmented reality work

Overthinking what you said? It’s your ‘lizard brain’ talking to newer, advanced parts of your brain

Black men — including transit workers — are targets for aggression on public transportation, study shows

Troubling spike in severe pregnancy-related complications for all ages in Illinois

Alcohol use identified by UTHealth Houston researchers as most common predictor of escalated cannabis vaping among youths in Texas

Need a landing pad for helicopter parenting? Frame tasks as learning

New MUSC Hollings Cancer Center research shows how Golgi stress affects T-cells' tumor-fighting ability

#16to365: New resources for year-round activism to end gender-based violence and strengthen bodily autonomy for all

Earliest fish-trapping facility in Central America discovered in Maya lowlands

São Paulo to host School on Disordered Systems

New insights into sleep uncover key mechanisms related to cognitive function

USC announces strategic collaboration with Autobahn Labs to accelerate drug discovery

Detroit health professionals urge the community to act and address the dangers of antimicrobial resistance

3D-printing advance mitigates three defects simultaneously for failure-free metal parts 

Ancient hot water on Mars points to habitable past: Curtin study

In Patagonia, more snow could protect glaciers from melt — but only if we curb greenhouse gas emissions soon

Simplicity is key to understanding and achieving goals

Caste differentiation in ants

Nutrition that aligns with guidelines during pregnancy may be associated with better infant growth outcomes, NIH study finds

New technology points to unexpected uses for snoRNA

Racial and ethnic variation in survival in early-onset colorectal cancer

Disparities by race and urbanicity in online health care facility reviews

Exploring factors affecting workers' acquisition of exercise habits using machine learning approaches

Nano-patterned copper oxide sensor for ultra-low hydrogen detection

Maintaining bridge safer; Digital sensing-based monitoring system

A novel approach for the composition design of high-entropy fluorite oxides with low thermal conductivity

A groundbreaking new approach to treating chronic abdominal pain

ECOG-ACRIN appoints seven researchers to scientific committee leadership positions

New model of neuronal circuit provides insight on eye movement

Cooking up a breakthrough: Penn engineers refine lipid nanoparticles for better mRNA therapies

[Press-News.org] Researchers produce tiny nanoparticles and reveal their inner structure for the first time