(Press-News.org) The colors in a flower patch appear completely different to a bear, a honeybee, a butterfly and humans. The ability to see these colors is generated by specific properties of opsins - light-sensitive proteins in the retina of our eyes. The number of opsins expressed and the molecular structure of the receptor proteins determines the colors we see.
In a paper published February 9 in Proceedings of the National Academy of Sciences a team of researchers led by Harvard University develop a novel method to express long wavelength invertebrate opsin proteins in vitro and detail the molecular structure of redshift (long-wavelength) and blueshift (short-wavelength) in the opsins of the iconic tropical lycaenid butterfly, Eumaeus atala.
The study led by Postdoctoral Fellow Marjorie Liénard and Professor Naomi Pierce, Department of Organismic and Evolutionary Biology, Harvard University, Research Associate Emeritus Gary Bernard, University of Washington, Seattle, and Professor Feng Zhang, Broad Institute, discovered previously unknown opsins that result in red-shifted long wavelength sensitivity in the visual system of Eumaeus atala. With this method researchers could pinpoint the specific base pair changes responsible for the spectral tuning of these visual proteins and reveal how vision genes evolved.
Aside from primates, relatively few animals living on land can perceive long-wavelength orange and red light. However, researchers have long known that certain butterflies have red light photoreceptors and show a preference to gather nectar at red flowers. The visual range for human eyes is typically 380nm to 700nm, but many insects can perceive shorter wavelengths of ultraviolet light below 400nm and they sometimes use these shorter wavelengths as a "private channel" of communication to signal to each other. Many flowers also take advantage of this ultraviolet reflectance to attract and signal rewards for pollinating insects such as bees, flies, and butterflies.
Given the importance of color-guided behaviors and the remarkable photoreceptor spectral diversity observed in insects, the dynamic opsin gene diversification found across lineages highlights their central role in adaptation. Insects are an ideal system in which to explore the dynamics of photoreceptor evolution; plenty of insect behavior is color-guided (e.g. mate-choice) and researchers know that insects vary remarkably in their spectral sensitivities. However, there lacked a set of tools that would allow researchers to probe the molecular details of insect vision.
To do this, researchers needed a tool to isolate and express a particular insect opsin gene in order to explore its structure and function when expressed in the membranes of cells in cell culture, a "heterologous expression system". Previously this method was used to analyze a few insect opsins sensitive to shorter wavelength, but opsins coding for longer wavelengths proved intractable leading researchers to speculate that these opsins were too unstable to be expressed in cell membranes.
'Because of the difficulty of expressing long-wavelength invertebrate opsins in vitro, our understanding of the molecular basis of functional shifts in opsin spectral sensitivities has been biased towards research primarily in vertebrates," said Liénard. The study by Liénard et al provides the tools needed to understand precisely how a single amino acid change in an opsin protein can alter what an insect sees and opens the ability to tease apart genotype-phenotype relationships underlying spectral tuning and visual adaptations in insects.
"Once we understand how genes making up the light-sensitive opsins in insect eyes function, we can start to retrace the evolutionary transitions involved in adaptive color vision across invertebrates," said Pierce.
Liénard made the critical breakthrough to express invertebrate opsin proteins in vitro optimizing each step - designing engineering cassettes, optimizing gene expression, and appropriately scaling up. Liénard's new system can be used to investigate opsins whose sensitivities range from the ultraviolet through to long wavelengths in the red, bordering on near infrared. And it can explore the behavior of these opsins without the interference of other eye components, such as filtering pigments, that often surround photoreceptor cells. "Once we understand how the genes making up the light-sensitive opsins in insect eyes function, we can start to retrace the evolutionary transitions involved in adaptive color vision across lineages," said Pierce.
The researchers characterized and purified all visual opsin genes in vitro for multiple species of butterflies. They then analyzed the photoreceptors where the opsin molecules are expressed across the eyes in the Atala hairstreak (Eumaeus atala). They looked for consistent patterns of base pair changes in different opsins, and then experimentally mutated the sequences of those opsins to test their evolutionary spectral tuning trajectories.
They discovered a new type of opsin absorbing red light and identified amino acids that are key to evolving green-shifted blue opsin functions. Lycaenid butterflies are famous for their rich diversity of wing coloration and behavioral ecology. Compared to the ancestral insect eye, which is thought to have been equipped with only one blue and one green receptor, these butterflies are able to maintain reliable color vision both across blue-green and green-red ranges of the light spectrum owing to the adaptive evolution of new opsin functions. Coordinated spectral shifts in green and red opsins underlie the genetic basis of red color vision in these butterflies.
The study also surprisingly showed that insects, which rely on a different subclass of opsin G-protein coupled receptors compared to vertebrates, nevertheless change blue opsin absorption by convergently shifting some of the same key amino acid residues in the protein binding pocket as short wavelength opsins of vertebrates. "But we also identified new tuning sites," said Liénard, "and the question now is whether the chromophore-binding sites are specific to this butterfly species, or whether they occurred recurrently as a signature of convergent adaptive evolution across insects."
"Color vision is driven by neural comparison among photoreceptors that have different spectral sensitivities," said Bernard. "But studying living eyes is a tedious task and obtaining a sufficient number of living individuals to make the measurements can also be a limiting factor."
Liénard, now a researcher at Lund University in Sweden, agreed, "This is why reconciling physiology and functional heterologous expression opens up new avenues in the field, especially since all invertebrate groups share the same opsin subclass. We hope this assay will 'deorphanize' functional studies of invertebrate opsins."
"Ultimately, this opens up the opportunity to better understand the structure-function relationships of light sensitive receptors," said Pierce, "and most importantly, how genotypic variation can translate into functional phenotypes, which is a cornerstone of evolutionary biology."
INFORMATION:
The research is supported by the National Science Foundation (NSF DEB-1541560, PHY-1411445, and a GRFP), the National Institutes of Health (1R01-HG009761, 1R01-MH110049, and 1DP1-HL141201), the Howard Hughes Medical Institute, and the Knut and Alice Wallenberg postdoctoral fellowship at the Broad Institute of MIT and Harvard.
Corresponding author(s)
Marjorie A. Liénard,
Marjorie.lienard@biol.lu.se
Naomi Pierce,
npierce@oeb.harvard.edu
In 2018, a faulty electric transmission line ignited the Camp Fire in Northern California, ultimately consuming 239 square miles and several communities, including the town of Paradise, which was 95 percent destroyed. At least 85 people died.
Structures have been rebuilt, but some things are worse. In a paper published February 2, 2021 in the International Journal of Environmental Research and Public Health, scientists at University of California San Diego, with colleagues elsewhere, describe chronic mental health problems among some residents who experienced the Camp Fire in varying degrees.
Direct exposure to large-scale fires significantly ...
Photoionization of water involves the migration and solvation of electrons, with many transient and highly active intermediates. The process results in a large blue shift in the absorption spectrum, from the THz or gigahertz region to the visible range. While the behavior of low-density quasifree electrons excited by small pump power density has been investigated extensively, we still know little about the transient evolution of photoexcited plasma in liquid water. Valuable insights were recently provided by an international research team in a study published in Advanced Photonics.
According to Liangliang Zhang, physics professor at Capital Normal University in Beijing and one of the senior authors on the study, the physical mechanism of plasma evolution on the ...
The structure of organic substances tetrahydroisoquinolines (THIQ) includes a benzene ring fused with a nitrogen-containing cycle. These compounds are in high demand in the pharmaceutical industry. They are used in the synthesis of myorelaxants, antidepressants, and drugs against hypertension, cough, and insomnia. Although different variations of THIQ structures can be found in natural sources (for example, as parts of phytotoxins), modern-day pharmaceutical manufacturers are also interested in their rare types, such as spirocyclic THIQs. In their molecules, two adjacent cycles share one common atom, thus creating an unusual and very stable 3D structure. This feature ...
The development of the so-called small molecules is a promising field of the pharmaceutical industry. Small molecules are organic compounds with a small molecular mass. They are often based on heterocycles--carbon rings that also include atoms of nitrogen and other elements. The synthesis of small molecules is much cheaper than the development of drugs based on antibodies or other biological molecules; however, their properties are still understudied. Even the slightest modifications can change the characteristics of a small molecule and open a whole new range of its practical applications. Therefore, many research teams working in the field of chemical pharmacology improve synthesis methods to create libraries of ...
The COVID-19 pandemic that shuttered cities around the world did not just affect the way we work, study and socialize. It also affected our mobility. With millions of workers no longer commuting, vehicle traffic across Canada has plummeted. This has had a significant impact on the quality of air in major Canadian cities, according to a new study by Concordia researchers.
A paper published in the journal Science of the Total Environment looked at downtown air quality monitoring station data from Vancouver, Edmonton, Saskatoon, Winnipeg, Toronto, Montreal, Halifax ...
To achieve target delivery of drugs to cells and organs, scientists have to be able to transport the molecules of pharmaceutical substances to targets using a controllable carrier. The role of such a carrier can be played by special particles, such as lipid droplets or magnetic nanoparticles. Among the latter, the most popular are the ones based on iron oxides. Their sizes range from 1 to 100 nm, which is dozens of times smaller than animal cells, and they can be moved within a body using an external magnetic field.
However, in practice, it is quite difficult to control nanoparticles with magnets, as the magnetic field quickly becomes weaker when the distance from the magnet increases. This problem ...
WASHINGTON, February 9, 2021 -- As COVID-19 spreads via respiratory droplets, researchers have become increasingly interested in the drying of droplets on impermeable and porous surfaces. Surfaces that accelerate evaporation can decelerate the spread of the COVID-19 virus.
In Physics of Fluids, by AIP Publishing, researchers from IIT Bombay show a droplet remains liquid for a much shorter time on a porous surface, making it less favorable to survival of the virus.
The researchers found the coronavirus can survive for four days on glass, seven days on plastic, and seven days on stainless steel. But on paper and cloth, the virus survived for only three hours and two days, respectively.
"Based on our study, we recommend that furniture in hospitals and offices, ...
What The Study Did: Researchers examined how common SARS- CoV-2 infection was among migrant workers in Singapore.
Authors: Vernon J. Lee, M.B.B.S., Ph.D., of the Ministry of Health in Singapore, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jama.2020.24071)
Editor's Note: The article includes conflict of interest and funding/support disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial disclosures, and funding and support.
INFORMATION:
Media advisory: The full article is linked to this news release.
Embed ...
WASHINGTON, February 9, 2021 -- The detailed physical processes and pathways involved in the transmission of COVID-19 are still not well understood. Researchers decided to use advanced computational fluid dynamics tools on supercomputers to deepen understanding of transmission and provide a quantitative assessment of how different environmental factors influence transmission pathways and airborne infection risk.
A restaurant outbreak in China was widely reported as strong evidence of airflow-induced transmission of COVID-19. But it lacked a detailed investigation about exactly how transmission occurred.
Why did some people get infected while others within the same area did not? ...
What The Viewpoint Says: The missteps and miscommunications that have stymied a more effective U.S. and global response to the COVID-19 pandemic bring into sharp focus the deficiencies in governance systems of the U.S. public health and scientific institutions.
Authors: K. M. Venkat Narayan, M.D., M.Sc., of the Rollins School of Public Health and School of Medicine at Emory University in Atlanta, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jama.2020.23479)
Editor's Note: The article includes conflict of interest disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest ...