(Press-News.org) Never before in over 1000 years the Atlantic Meridional Overturning Circulation (AMOC), also known as Gulf Stream System, has been as weak as in the last decades. This is the result of a new study by scientists from Ireland, Britain and Germany. The researchers compiled so-called proxy data, taken mainly from natural archives like ocean sediments or ice cores, reaching back many hundreds of years to reconstruct the flow history of the AMOC. They found consistent evidence that its slowdown in the 20th century is unprecedented in the past millennium; it is likely linked to human-caused climate change. The giant ocean circulation is relevant for weather patterns in Europe and regional sea-levels in the US; its slowdown is also associated with an observed cold blob in the northern Atlantic.
"The Gulf Stream System works like a giant conveyor belt, carrying warm surface water from the equator up north, and sending cold, low-salinity deep water back down south. It moves nearly 20 million cubic meters of water per second, almost a hundred times the Amazon flow," explains Stefan Rahmstorf from the Potsdam Institute for Climate Impact Research PIK, initiator of the study to be published in Nature Geoscience. Previous studies by Rahmstorf and colleagues showed a slowdown of the ocean current of about 15 percent since the mid-20th century, linking this to human-caused global warming, but a robust picture about its long-term development has up to now been missing: This is what the researchers provide with their review of results of proxy data studies.
"For the first time, we have combined a range of previous studies and found they provide a consistent picture of the AMOC evolution over the past 1600 years," says Rahmstorf. "The study results suggest that it has been relatively stable until the late 19th century. With the end of the little ice age in about 1850, the ocean currents began to decline, with a second, more drastic decline following since the mid-20th century." Already the 2019 special report on the oceans of the Intergovernmental Panel on Climate Change (IPCC) concluded with medium confidence "that the Atlantic Meridional Overturning Circulation (AMOC) has weakened relative to 1850-1900." "The new study provides further independent evidence for this conclusion and puts it into a longer-term paleoclimatic context," Rahmstorf adds.
From temperature to flow speed changes: the art of reconstructing past climate changes
Because ongoing direct AMOC measurements only started in 2004, the researchers applied an indirect approach, using so-called proxy data, to find out more about the long-term perspective of its decline. Proxy data, as witnesses of the past, consist of information gathered from natural environmental archives such as tree rings, ice cores, ocean sediments, and corals, as well as from historical data, for instance from ship logs.
"We used a combination of three different types of data to obtain information about the ocean currents: temperature patterns in the Atlantic Ocean, subsurface water mass properties and deep-sea sediment grain sizes, dating back from 100 to ca. 1600 years. While the individual proxy data is imperfect in representing the AMOC evolution, the combination of them revealed a robust picture of the overturning circulation," explains Levke Caesar, part of the Irish Climate Analysis and Research Unit at Maynooth University and guest scientist at PIK.
As proxy records in general are subject to uncertainties, statistician Niamh Cahill from Maynooth University in Ireland tested the robustness of the results in consideration of these. She found that in 9 of the 11 data sets considered, the modern AMOC weakness is statistically significant. "Assuming that the processes measured in proxy records reflect changes in AMOC, they provide a consistent picture, despite the different locations and time scales represented in the data. The AMOC has weakened unprecedentedly in over 1000 years," she says.
Why is the AMOC slowing down?
An AMOC slowdown has long been predicted by climate models as a response to global warming caused by greenhouse gases. According to a number of studies, this is likely the reason for the observed weakening. The Atlantic overturning is driven by what the scientists call deep convection, triggered by the differences in the density of the ocean water: Warm and salty water moves from the south to the north where it cools down and thus gets denser. When it is heavy enough the water sinks to deeper ocean layers and flows back to the south. Global warming disturbs this mechanism: Increased rainfall and enhanced melting of the Greenland Ice Sheet add fresh water to the surface ocean. This reduces the salinity and thus the density of the water, inhibiting the sinking and thus weakening the flow of the AMOC.
Its weakening has also been linked to a unique substantial cooling of the northern Atlantic over the past hundred years. This so-called cold blob was predicted by climate models as a result of a weakening AMOC, which transports less heat into this region.
The consequences of the AMOC slowdown could be manifold for people living on both sides of the Atlantic as Levke Caesar explains: "The northward surface flow of the AMOC leads to a deflection of water masses to the right, away from the US east coast. This is due to Earth's rotation that diverts moving objects such as currents to the right in the northern hemisphere and to the left in the southern hemisphere. As the current slows down, this effect weakens and more water can pile up at the US east coast, leading to an enhanced sea level rise." In Europe, a further slowdown of the AMOC could imply more extreme weather events like a change of the winter storm track coming off the Atlantic, possibly intensifying them. Other studies found possible consequences being extreme heat waves or a decrease in summer rainfall. Exactly what the further consequences are is the subject of current research; scientists also aim to resolve which components and pathways of the AMOC have changed how and for what reasons.
"If we continue to drive global warming, the Gulf Stream System will weaken further - by 34 to 45 percent by 2100 according to the latest generation of climate models," concludes Rahmstorf. This could bring us dangerously close to the tipping point at which the flow becomes unstable.
INFORMATION:
Article: L. Caesar, G. D. McCarthy, D. J. R. Thornalley, N. Cahill, S. Rahmstorf (2020): Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nature Geoscience [DOI: 10.1038/s41561-021-00699-z]
More intense and frequent fires are reducing the size of tree communities in many regions of the world.
Slower-growing tree species are better at surviving fires, but these may capture less atmospheric carbon and reduce nutrient availability in the soil.
Not all regions are suitable for planting trees to tackle climate change; schemes must consider local wildfire frequency, vegetation cover and climate, and how these might change over time.
Researchers have analysed decades' worth of data on the impact of repeated fires on ecosystems across the world. Their results, published today in the journal Nature Ecology and Evolution, show that repeated fires are driving long-term changes to tree communities and reducing their population ...
Until recently, scientists believed that the primary cilium - an antenna-like structure found on the surface of most human cells - was largely vestigial and had little bearing on the day-to-day lives of human beings. But more recently, a relatively small number of people have been found to have rare genetic disorders affecting the cilium, characterized by a number of health problems, including common conditions like diabetes, kidney failure, and liver fibrosis. Now, an analysis of genes involved in the function of the cilium found that the same genes causing its rare diseases might ...
What The Study Did: Researchers in this observational study of more than 10,000 U.S. Air Force basic trainees examined whether symptoms and laboratory results on the first day of COVID-19 diagnosis are associated with development of a case cluster in a congregate setting.
Authors: Joseph E. Marcus, M.D., of the Brooke Army Medical Center at Joint Base San Antonio Fort Sam Houston, Texas, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamanetworkopen.2021.0202)
Editor's Note: Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial disclosures, and funding ...
What The Study Did: This research letter describes the various otolaryngologic manifestations in patients 18 years or younger with pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2.
Authors: Ryan C. T. Cheong, B.Sc.(Hons), M.B.B.S., of the Great Ormond Street Hospital for Children NHS Trust in London, United Kingdom, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamaoto.2020.5698)
Editor's Note: The article includes conflict of interest and funding/support disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest ...
What The Study Did: Data from five studies were pooled to investigate whether cognitive decline among older U.S. adults varied by sex.
Authors: Deborah A. Levine, M.D., M.P.H., of the University of Michigan in Ann Arbor, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamanetworkopen.2021.0169)
Editor's Note: The article includes conflicts of interest and funding/support disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial ...
What The Study Did: Researchers looked at whether state legalization of recreational cannabis was associated with changes in use by women before, during and after pregnancy.
Authors: Kara R. Skelton, Ph.D., of the Johns Hopkins Bloomberg School of Public Health in Baltimore, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamanetworkopen.2021.0138)
Editor's Note: Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial disclosures, ...
Antarctica's northern George VI Ice Shelf experienced record melting during the 2019-2020 summer season compared to 31 previous summers of dramatically lower melt, a University of Colorado Boulder-led study found. The extreme melt coincided with record-setting stretches when local surface air temperatures were at or above the freezing point.
"During the 2019-2020 austral summer, we observed the most widespread melt and greatest total number of melt days of any season for the northern George VI Ice Shelf," said CIRES Research Scientist Alison Banwell, lead author of the study published in The Cryosphere.
Banwell and her co-authors--scientists at ...
Nanoengineers at the University of California San Diego have discovered new fundamental insights for developing lithium metal batteries that perform well at ultra-low temperatures; mainly, that the weaker the electrolyte holds on to lithium ions, the better. By using such a weakly binding electrolyte, the researchers developed a lithium metal battery that can be repeatedly recharged at temperatures as low as -60 degrees Celsius--a first in the field.
Researchers report their work in a paper published Feb. 25 in Nature Energy.
In tests, the proof-of-concept battery retained 84% and 76% of its capacity over 50 cycles at -40 and -60 degrees Celsius, respectively. Such performance is unprecedented, researchers ...
The exfoliation of graphite into graphene layers inspired the investigation of thousands of layered materials: amongst them transition metal dichalcogenides (TMDs). These semiconductors can be used to make conductive inks to manufacture printed electronic and optoelectronic devices. However, defects in their structure may hinder their performance. Now, Graphene Flagship researchers have overcome these hurdles by introducing 'molecular bridges'- small molecules that interconnect the TMD flakes, thereby boosting the conductivity and overall performance.
The results, published in Nature Nanotechnology, come from a multidisciplinary collaboration between Graphene Flagship partners the University of Strasbourg and CNRS, France, AMBER and Trinity College Dublin, Ireland, ...
Human rights law can provide a transparent and fair framework for vaccine allocations, researchers suggest.
- All countries face the ethical challenge of how to allocate limited supplies of safe, effective COVID-19 vaccines
- Researchers say that governments should look to human rights principles and commitments to help them decide who should get priority for the first available doses of COVID-19 vaccine.
- A human rights approach would include social vulnerability alongside medical vulnerability in decision-making because health is affected by social factors.
- National vaccine roll-outs should take account of these overlapping vulnerabilities
As Governments around the world wrestle with the question of designing ...