(Press-News.org) Fiber-optic cables run underneath nearly all city grids across the United States and provide internet and cable TV to millions, but what if those systems could also provide valuable information related to hazardous events such as earthquakes and flooding? A team of researchers at Penn State have found they can do just that.
The scientists are using fiber-optic distributed acoustic sensing (DAS) technology to turn existing telecommunication infrastructure that is already installed underground into a valuable resource for monitoring ground vibrations.
"We discovered the fibers could pick up a wide variety of signal vibrations, from thunderstorms to human walking steps to music concerts," said Tieyuan Zhu, assistant professor of geophysics at Penn State and principal investigator on the project. "We can even distinguish the specific song at a concert by the patterns of the high and low tones. That's a great demonstration of the sensitivity of these sensors."
Traditional seismic monitoring devices, called geophones, are difficult to deploy in urban areas. Obtaining permission and space to install sensors, protecting sensors against theft and vandalism, and the high costs to maintain them makes it prohibitive to gain reliable long-term data, the scientists said.
DAS technology allows scientists to plug into unused fiber, called dark fiber, greatly reducing the cost and setup time that hinders traditional seismic monitoring devices. A laser interrogator unit simply needs to be plugged into one end of a stretch of fiber to begin collecting data, the scientists said.
"Several experiments in California have been carried out by teams using existing telecommunication infrastructure," Zhu said. "But deploying this technology on the East Coast is important because we have very special geology here."
The soil and shallow bedrock in the Allegheny Mountains region create complex near-surface geophysical properties. The underlying bedrock can slowly dissolve due to circulating groundwater, which can form sinkholes and caverns. Especially in urban areas, sinkhole collapse and settling issues can threaten human safety and property. In addition, strong seasonal variations in temperature and precipitation create a very different environment to that of California.
Zhu and his research team created the Penn State Fiber-Optic foR Environmental SEnsEing (FORESEE) project, the first deployment of the DAS technology in the eastern U.S. The goal of this project was to address the long-standing challenge of real-time monitoring of environmental and subsurface physical, chemical and biological changes in urban areas. FORESEE also aims to develop the DAS fiber sensing arrays to turn the Penn State University Park campus and surrounding areas into a living lab for the collection of high-resolution data on environmental, energy and infrastructure systems. The researchers report their results in Solid Earth.
The team gained access to dark fiber-optic cables beneath the campus and converted the cable to 2,300 seismic sensors using DAS. They then continuously recorded ground vibration data along the 3-mile stretch starting in April 2019. The experiment generated many tens of terabytes of data, which was stored in a network-attached storage server. The server was then connected to an internet network, providing the scientists with remote data access in real time. The density of the DAS recordings provided extraordinary resolution that enabled insight into their cause and allowed the researchers to distinguish between various signals, the scientists said.
The preliminary results suggest DAS has the capability to sense broadband vibrations and discriminate between the seismic signatures of different earthquakes and anthropogenic sources from events such as mining blasts, vehicles, music concerts and walking steps.
But DAS does not come without limitations. Traditional geophones have three components, two horizontal sensors and one vertical sensor, allowing them to capture vibrations in all directions. DAS technology, however, is only able to sense vibrations horizontally as there is no need for vertical sensors in fiber-optic cables meant for internet and cable. Therefore, the data is not as comprehensive as data from traditional geophones.
"We know this is a limitation," Zhu said. "Hopefully in the next five years, this can be overcome by new fiber-optic technology."
In addition to its geological uses, DAS can yield insights into varying patterns of human activities relevant to public health and urban planning. Traffic monitoring and redirection that does not require private cell phone data, gunshot detection, industrial noise pollution monitoring and subsurface water utility monitoring may all be improved through the use of DAS technology, the scientists said. The value of DAS has also been recognized in inaccessible and harsh environments, enabling offshore ocean observations and the ability to monitor permafrost stability in the Arctic.
Now that the researchers know what the technology can do, Zhu said their next step is using DAS to monitor smaller events long-term, like the underground movements that lead to sinkholes and flooding. They also want to look at the events that occur where the atmosphere meets the earth since there is currently no way to monitor how a thunderstorm's energy impacts the solid earth's near surface.
"DAS arrays utilizing existing telecommunication fibers can play an increasing role in the development of resilient, sustainable cities," Zhu said.
INFORMATION:
Other contributing researchers included Junzhu Shen, doctoral student, and Sam Hone, graduate student, both in geosciences at Penn State; and Eileen R. Martin, assistant professor of computational mathematics at Virginia Tech.
The U.S. Department of Energy partially supported this work.
American Geophysical Union U.S. Geological Survey Joint ReleaseWASHINGTON--Southern California can now expect to see post-wildfire landslides occurring almost every year, with major events expected roughly every ten years, a new study finds. The results show Californians are now facing a double whammy of increased wildfire and landslide risk caused by climate change-induced shifts in the state's wet and dry seasons, according to researchers who mapped landslide vulnerability in the southern half of the state.
"This is our attempt to get people thinking about where these hazards are going to be before there's even a fire," said Jason Kean, a hydrologist at the U.S. Geological Survey in Denver and lead author ...
HOUSTON - (Feb. 25, 2021) - A new theory by Rice University scientists could boost the growing field of spintronics, devices that depend on the state of an electron as much as the brute electrical force required to push it.
Materials theorist Boris Yakobson and graduate student Sunny Gupta at Rice's Brown School of Engineering describe the mechanism behind Rashba splitting, an effect seen in crystal compounds that can influence their electrons' "up" or "down" spin states, analogous to "on" or "off" in common transistors.
"Spin" is a misnomer, since quantum physics constrains electrons ...
BUFFALO, N.Y. -- Graphene is incredibly strong, lightweight, conductive ... the list of its superlative properties goes on.
It is not, however, magnetic -- a shortcoming that has stunted its usefulness in spintronics, an emerging field that scientists say could eventually rewrite the rules of electronics, leading to more powerful semiconductors, computers and other devices.
Now, an international research team led by the University at Buffalo is reporting an advancement that could help overcome this obstacle.
In a study published today in the journal Physical Review Letters, researchers describe how they paired a magnet with graphene, and induced what they describe as "artificial magnetic texture" in the nonmagnetic wonder material.
"Independent of each ...
As climate change increases the occurrence of catastrophic natural disasters around the world, international organizations are looking for ways to reduce the risk of such disasters. One approach under exploration is the humanitarian community's forecast-based early action (FbA), which seeks to enable pre-emptive actions based on forecasts of extreme events.
With FbA, disaster response shifts toward anticipating disasters to ameliorate their destructive effects. However, the development of data-based triggers and metrics for action rely on timely and accurate information. A group of researchers publishing in SPIE's END ...
HOUSTON - (Feb. 25, 2021) - COVID-19 can be diagnosed in 55 minutes or less with the help of programmed magnetic nanobeads and a diagnostic tool that plugs into an off-the-shelf cell phone, according to Rice University engineers.
The Rice lab of mechanical engineer Peter Lillehoj has developed a stamp-sized microfluidic chip that measures the concentration of SARS-CoV-2 nucleocapsid (N) protein in blood serum from a standard finger prick. The nanobeads bind to SARS-CoV-2 N protein, a biomarker for COVID-19, in the chip and transport it to an electrochemical sensor that detects minute amounts of the biomarker.
The ...
LOS ALAMOS, N.M., February 24, 2021--The Beaufort Sea, the Arctic Ocean's largest freshwater reservoir, has increased its freshwater content by 40 percent over the last two decades, putting global climate patterns at risk. A rapid release of this freshwater into the Atlantic Ocean could wreak havoc on the delicate climate balance that dictates global climate.
"A freshwater release of this size into the subpolar North Atlantic could impact a critical circulation pattern, called the Atlantic Meridional Overturning Circulation, which has a significant influence on northern-hemisphere climate," ...
After traveling several billion miles toward the Sun, a wayward young comet-like object orbiting among the giant planets has found a temporary parking place along the way. The object has settled near a family of captured ancient asteroids, called Trojans, that are orbiting the Sun alongside Jupiter. This is the first time a comet-like object has been spotted near the Trojan population.
The unexpected visitor belongs to a class of icy bodies found in space between Jupiter and Neptune. Called "Centaurs," they become active for the first time when heated as they approach the Sun, and dynamically transition into becoming more comet-like.
Visible-light snapshots by NASA's Hubble Space Telescope reveal that the vagabond object shows signs of comet activity, such as a tail, ...
Researchers have discovered that there may be a new pathway in the brain that provides pain relief and reduces cravings for opioids.
Over a third of the U.S. population suffers from chronic pain, with little to no reported relief from medication. Transcranial magnetic brain stimulation (TMS) is a noninvasive form of brain stimulation that may offer a new treatment option for these underserved members of our community.
In a recent paper in Drug and Alcohol Dependence, researchers at the Medical University of South Carolina evaluated two different strategies for relieving pain with TMS: applying TMS to the motor cortex and the ...
When birds see a predator in their midst, one defensive strategy is to call out loudly, attracting other birds of the same or different species to do the same. Sometimes individuals within this "mobbing flock" will fly over or at the predator or attack it directly. Now, researchers reporting in the journal Current Biology on February 25 have found that male superb lyrebirds do something rather unexpected: they imitate a mobbing flock in courtship and even in the act of mating with a female.
"Our paper shows that male superb lyrebirds regularly create a remarkable acoustic illusion of a flock of mobbing birds ...
Researchers at the Garvan Institute of Medical Research have discovered a new type of bone cell that may reveal new therapeutic approaches for osteoporosis and other skeletal diseases.
The new cells, which the researchers term 'osteomorphs', are found in the blood and bone marrow, and fuse together to form osteoclasts, specialised cells that break down bone tissue. They have a unique genomic profile that reveals promising and as yet unexplored targets for therapy.
"This discovery is a game-changer, which not only helps us understand bone biology but presents significant new in-roads for osteoporosis therapy," says co-senior ...