PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Theory could accelerate push for spintronic devices

Rice University models help ID materials for advanced electronics, computer memories

Theory could accelerate push for spintronic devices
2021-02-25
(Press-News.org) HOUSTON - (Feb. 25, 2021) - A new theory by Rice University scientists could boost the growing field of spintronics, devices that depend on the state of an electron as much as the brute electrical force required to push it.

Materials theorist Boris Yakobson and graduate student Sunny Gupta at Rice's Brown School of Engineering describe the mechanism behind Rashba splitting, an effect seen in crystal compounds that can influence their electrons' "up" or "down" spin states, analogous to "on" or "off" in common transistors.

"Spin" is a misnomer, since quantum physics constrains electrons to only two states. But that's useful, because it gives them the potential to become essential bits in next-generation quantum computers, as well as more powerful everyday electronic devices that use far less energy.

However, finding the best materials to read and write these bits is a challenge.

The Rice model characterizes single layers to predict heteropairs -- two-dimensional bilayers -- that enable large Rashba splitting. These would make it possible to control the spin of enough electrons to make room-temperature spin transistors, a far more advanced version of common transistors that rely on electric current.

"The working principle behind information processing is based on the flow of electrons that can be either off or on," Gupta said. "But electrons also have a spin degree of freedom that can be used to process information and is the basis behind spintronics. The ability to control electron spin by optimizing the Rashba effect can bring new functionality to electronic devices.

"A cellphone with spin-related memory would be much more powerful and much less energy-consuming than it is now," he said.

Yakobson and Gupta would like to eliminate the trial and error of finding materials. Their theory, presented in the Journal of the American Chemical Society, aims to do just that.

"Electron spins are tiny magnetic moments that usually require a magnetic field to control," Gupta said. "However, manipulating such fields on the small scales typical in computing is very difficult. The Rashba effect is the phenomenon that allows us to control the electron spin with an easy-to-apply electric field instead of a magnetic field."

Yakobson's group specializes in atom-level computations that predict interactions between materials. In this case, their models helped them understand that calculating the Born effective charge of the individual material components provides a means to predict Rashba splitting in a bilayer.

"Born effective charge characterizes the rate of the bond polarization change under external perturbations of the atoms," Gupta said. "When two layers are stacked together, it effectively captures the resulting change in lattices and charges, which brings about the overall interlayer polarization and interface field responsible for the Rashba splitting."

Their models turned up two heterobilayers -- lattices of MoTe2|Tl2O or MoTe2|PtS2 -- that are good candidates for the manipulation of Rashba spin-orbit coupling, which happens at the interface between two layers held together by the weak van der Waals force. (For the less-chemically inclined, Mo is molybdenum, Te is tellurium, Tl is thallium, O is oxygen, Pt is platinum and S is sulfur.)

Gupta noted the Rashba effect is known to occur in systems with broken inversion symmetry -- where the spin of the electron is perpendicular to its momentum -- that generates a magnetic field. Its strength can be controlled by an external voltage.

"The difference is that the magnetic field due to the Rashba effect depends on the electron's momentum, which means the magnetic field experienced by a left-moving and right-moving electron is different," he said. "Imagine an electron with spin pointing in the z-direction and moving in the x-direction; it will experience a momentum-dependent Rashba magnetic field in the y-direction, which will precess the electron along the y-axis and change its spin orientation."

Where a traditional field-effect transistor (FET) turns on or off depending on the flow of charge across a barrier with gate voltage, spin transistors control the spin precession length by a gate electric field. If the spin orientation is the same at the transistor's source and drain, the device is on; if the orientation differs, it's off. Because a spin transistor does not require the electronic barrier found in FETs, it needs less power.

"That gives spintronic devices an enormous advantage compared to conventional charge-based electronic devices," Gupta said. "Spin states can be set quickly, which makes transferring data quicker. And spin is nonvolatile. Information sent using spin remains fixed even after a loss of power. Moreover, less energy is needed to change spin than to generate current to maintain electron charges in a device, so spintronics devices use less power."

"To the chemist in me," Yakobson said, "the revelation here that spin-splitting strength depends on the Born charge is, in a way, very similar to the bond ionicity versus the electronegativity of the atoms in Pauling's formula. This parallel is very intriguing and deserves further exploration."

INFORMATION:

Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry at Rice.

The Office of Naval Research and the Army Research Office supported the study. The National Energy Research Scientific Computing (NERSC) Center, a Department of Energy Office of Science user facility, provided computing resources.

Read the abstract at https://pubs.acs.org/doi/10.1021/jacs.0c12809.

This news release can be found online at https://news.rice.edu/2021/02/25/theory-could-accelerate-push-for-spintronic-devices/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Yakobson Research Group: https://biygroup.blogs.rice.edu

Rice Department of Materials Science and Nanoengineering: https://msne.rice.edu

George R. Brown School of Engineering: https://engineering.rice.edu

Images for download:

https://news-network.rice.edu/news/files/2021/02/0301_RASHBA-1-WEB.jpg

The image at left shows the crystal structure of a MoTe2|PtS2 heterobilayer with isocharge plots from a model created at Rice University. When the materials are stacked together, mirror symmetry is broken and there is a charge transfer that creates an intrinsic electric field. This field is responsible for Rashba-type spin-splitting shown by the band structure at right, where the spin is perpendicular to momentum. (Credit: Sunny Gupta/Rice University)

https://news-network.rice.edu/news/files/2021/02/0301_RASHBA-2-web.jpg

CAPTION: Sunny Gupta. (Credit: Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,978 undergraduates and 3,192 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.

Jeff Falk
713-348-6775
jfalk@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu


[Attachments] See images for this press release:
Theory could accelerate push for spintronic devices

ELSE PRESS RELEASES FROM THIS DATE:

Scientists induce artificial 'magnetic texture' in graphene

Scientists induce artificial magnetic texture in graphene
2021-02-25
BUFFALO, N.Y. -- Graphene is incredibly strong, lightweight, conductive ... the list of its superlative properties goes on. It is not, however, magnetic -- a shortcoming that has stunted its usefulness in spintronics, an emerging field that scientists say could eventually rewrite the rules of electronics, leading to more powerful semiconductors, computers and other devices. Now, an international research team led by the University at Buffalo is reporting an advancement that could help overcome this obstacle. In a study published today in the journal Physical Review Letters, researchers describe how they paired a magnet with graphene, and induced what they describe as "artificial magnetic texture" in the nonmagnetic wonder material. "Independent of each ...

Getting ahead of climate change

Getting ahead of climate change
2021-02-25
As climate change increases the occurrence of catastrophic natural disasters around the world, international organizations are looking for ways to reduce the risk of such disasters. One approach under exploration is the humanitarian community's forecast-based early action (FbA), which seeks to enable pre-emptive actions based on forecasts of extreme events. With FbA, disaster response shifts toward anticipating disasters to ameliorate their destructive effects. However, the development of data-based triggers and metrics for action rely on timely and accurate information. A group of researchers publishing in SPIE's END ...

Chip simplifies COVID-19 testing, delivers results on a phone

Chip simplifies COVID-19 testing, delivers results on a phone
2021-02-25
HOUSTON - (Feb. 25, 2021) - COVID-19 can be diagnosed in 55 minutes or less with the help of programmed magnetic nanobeads and a diagnostic tool that plugs into an off-the-shelf cell phone, according to Rice University engineers. The Rice lab of mechanical engineer Peter Lillehoj has developed a stamp-sized microfluidic chip that measures the concentration of SARS-CoV-2 nucleocapsid (N) protein in blood serum from a standard finger prick. The nanobeads bind to SARS-CoV-2 N protein, a biomarker for COVID-19, in the chip and transport it to an electrochemical sensor that detects minute amounts of the biomarker. The ...

Freshwater outflow from Beaufort Sea could alter global climate patterns

Freshwater outflow from Beaufort Sea could alter global climate patterns
2021-02-25
LOS ALAMOS, N.M., February 24, 2021--The Beaufort Sea, the Arctic Ocean's largest freshwater reservoir, has increased its freshwater content by 40 percent over the last two decades, putting global climate patterns at risk. A rapid release of this freshwater into the Atlantic Ocean could wreak havoc on the delicate climate balance that dictates global climate. "A freshwater release of this size into the subpolar North Atlantic could impact a critical circulation pattern, called the Atlantic Meridional Overturning Circulation, which has a significant influence on northern-hemisphere climate," ...

Comet makes a pit stop near Jupiter's asteroids

Comet makes a pit stop near Jupiters asteroids
2021-02-25
After traveling several billion miles toward the Sun, a wayward young comet-like object orbiting among the giant planets has found a temporary parking place along the way. The object has settled near a family of captured ancient asteroids, called Trojans, that are orbiting the Sun alongside Jupiter. This is the first time a comet-like object has been spotted near the Trojan population. The unexpected visitor belongs to a class of icy bodies found in space between Jupiter and Neptune. Called "Centaurs," they become active for the first time when heated as they approach the Sun, and dynamically transition into becoming more comet-like. Visible-light snapshots by NASA's Hubble Space Telescope reveal that the vagabond object shows signs of comet activity, such as a tail, ...

New treatment location challenges thoughts on addiction

New treatment location challenges thoughts on addiction
2021-02-25
Researchers have discovered that there may be a new pathway in the brain that provides pain relief and reduces cravings for opioids. Over a third of the U.S. population suffers from chronic pain, with little to no reported relief from medication. Transcranial magnetic brain stimulation (TMS) is a noninvasive form of brain stimulation that may offer a new treatment option for these underserved members of our community. In a recent paper in Drug and Alcohol Dependence, researchers at the Medical University of South Carolina evaluated two different strategies for relieving pain with TMS: applying TMS to the motor cortex and the ...

Male superb lyrebirds imitate alarm calls of a "mobbing flock" while mating

2021-02-25
When birds see a predator in their midst, one defensive strategy is to call out loudly, attracting other birds of the same or different species to do the same. Sometimes individuals within this "mobbing flock" will fly over or at the predator or attack it directly. Now, researchers reporting in the journal Current Biology on February 25 have found that male superb lyrebirds do something rather unexpected: they imitate a mobbing flock in courtship and even in the act of mating with a female. "Our paper shows that male superb lyrebirds regularly create a remarkable acoustic illusion of a flock of mobbing birds ...

New type of bone cell could reveal targets for osteoporosis treatment

2021-02-25
Researchers at the Garvan Institute of Medical Research have discovered a new type of bone cell that may reveal new therapeutic approaches for osteoporosis and other skeletal diseases. The new cells, which the researchers term 'osteomorphs', are found in the blood and bone marrow, and fuse together to form osteoclasts, specialised cells that break down bone tissue. They have a unique genomic profile that reveals promising and as yet unexplored targets for therapy. "This discovery is a game-changer, which not only helps us understand bone biology but presents significant new in-roads for osteoporosis therapy," says co-senior ...

Environment: Shifting from small to medium plastic bottles could reduce PET waste

2021-02-25
A 20% shift in beverage sales from small to medium-sized plastic bottles could reduce the production of polyethylene terephthalate (PET) waste in the USA by over 9,000 tonnes annually, a study in Scientific Reports suggests. PET is the dominant material used in plastic bottles containing non-alcoholic beverages. Rafael Becerril-Arreola and Randolph Bucklin weighed 187 differently sized PET bottles sold by the best-selling beverage brands in Minnesota, USA, to identify which bottles sizes were the most efficient at delivering the highest volume of beverage for the lowest packaging weight. To validate their findings, the researchers combined data on sales of different sized PET bottles ...

Light unbound: Data limits could vanish with new optical antennas

Light unbound: Data limits could vanish with new optical antennas
2021-02-25
Researchers at the University of California, Berkeley, have found a new way to harness properties of light waves that can radically increase the amount of data they carry. They demonstrated the emission of discrete twisting laser beams from antennas made up of concentric rings roughly equal to the diameter of a human hair, small enough to be placed on computer chips. The new work, reported in a paper published Thursday, Feb. 25, in the journal Nature Physics, throws wide open the amount of information that can be multiplexed, or simultaneously transmitted, by a coherent light source. A common example of multiplexing is the transmission of multiple telephone calls ...

LAST 30 PRESS RELEASES:

Evolution of fast-growing fish-eating herring in the Baltic Sea

Cryptographic protocol enables secure data sharing in the floating wind energy sector

Can drinking coffee or tea help prevent head and neck cancer?

Development of a global innovative drug in eye drop form for treating dry age-related macular degeneration

Scientists unlock secrets behind flowering of the king of fruits

Texas A&M researchers illuminate the mysteries of icy ocean worlds

Prosthetic material could help reduce infections from intravenous catheters

Can the heart heal itself? New study says it can

Microscopic discovery in cancer cells could have a big impact

Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer

Breakthrough new material brings affordable, sustainable future within grasp

How everyday activities inside your home can generate energy

Inequality weakens local governance and public satisfaction, study finds

Uncovering key molecular factors behind malaria’s deadliest strain

UC Davis researchers help decode the cause of aggressive breast cancer in women of color

Researchers discovered replication hubs for human norovirus

SNU researchers develop the world’s most sensitive flexible strain sensor

Tiny, wireless antennas use light to monitor cellular communication

Neutrality has played a pivotal, but under-examined, role in international relations, new research shows

Study reveals right whales live 130 years — or more

Researchers reveal how human eyelashes promote water drainage

Pollinators most vulnerable to rising global temperatures are flies, study shows

DFG to fund eight new research units

Modern AI systems have achieved Turing's vision, but not exactly how he hoped

Quantum walk computing unlocks new potential in quantum science and technology

Construction materials and household items are a part of a long-term carbon sink called the “technosphere”

First demonstration of quantum teleportation over busy Internet cables

Disparities and gaps in breast cancer screening for women ages 40 to 49

US tobacco 21 policies and potential mortality reductions by state

AI-driven approach reveals hidden hazards of chemical mixtures in rivers

[Press-News.org] Theory could accelerate push for spintronic devices
Rice University models help ID materials for advanced electronics, computer memories