PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Scientists develop elements for the future electronics

Researchers are developing thin films, the elements for biomolecular electronics.

Scientists develop elements for the future electronics
2021-03-02
(Press-News.org) Modern electronics is approaching the limit of its capabilities, which are determined by the fundamental laws of physics. Therefore, the use of classical materials, for example, silicon, is no longer able to meet the requirements for energy efficiency of the devices. Currently, it is necessary to start searching for new materials, new principles of electronic devices' functioning. To solve this problem, researchers of Peter the Great St.Petersburg Polytechnic University (SPbPU) are developing thin films, the elements for biomolecular electronics. Scientists believe that biological macromolecules such as nucleic acids, proteins, amino acids can become a promising material for modern electronics. It obtains several unique properties, for example, the self-organization ability, which is why the molecules can be assembled into certain structures, for example, into biomolecular films.

"Our scientific group is investigating various properties of the thin films based on the albumin protein. In the course of experiments, we dilute the protein in various concentrations and use the method of isothermal dehydration (water evaporation at a certain temperature and pressure) to form the biomolecular films. Depending on the composition of the initial samples and drying parameters, we obtain different structures inside the films, " notes Maxim Baranov, an assistant at the Higher School of Applied Physics and Space Technologies SPbPU.

Using an optical microscope, the scientists fixed the structures inside the dried albumin proteins, and also developed software in Python, which can isolate and analyze images of biomolecular films with a help of the special mathematical apparatus. Molecular modeling for solving this problem is carried out at the facilities of the Supercomputer Center "Polytechnic". The research results were published in the first quartile journal Symmetry by MDPI.

Maxim Baranov adds: "Semiconductor integrated circuits, which are currently used in electronic devices, have a stationary configuration. In turn, the functioning of proteins is based on dynamics, i.e. a biological system can transform in the process of interaction with other objects. Therefore, the molecules can perfectly repeat the required structure, for example as in integrated circuits. However, we expect a lower number of defects in the biomolecular thin films. We can't say that the biomolecular platform will completely replace the classic semiconductor devices. Rather, we are talking about its symbiosis. Our scientific group believes that thin films will be introduced not in the mass market of electronics, but rather in single applications.

According to scientists, various types of proteins can be used for further research, including plant proteins. Perhaps in the future, it will simplify the creation of biomolecular thin films. Currently, it is necessary to create a certain set of mathematical parameters for a more accurate description of the thin films and their properties. A large number of experiments will be carried out before a prototype of the element is created, which could be implemented into the future device.

INFORMATION:


[Attachments] See images for this press release:
Scientists develop elements for the future electronics

ELSE PRESS RELEASES FROM THIS DATE:

'A Bluetooth mouse'--you can wirelessly read a mouse's mind

A Bluetooth mouse--you can wirelessly read a mouses mind
2021-03-02
Overview: A research team at the Department of Electrical and Electronic Information Engineering, Department of Computer Science and Engineering, Department of Applied Chemistry and Life Science, and the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology has developed a lightweight, compact, Bluetooth-low-energy-based wireless neuronal recording system for use in mice. The wireless system weighs END ...

Desert beetle: a help for the drying planet

2021-03-02
A number of scientists whose work is inspired by natural behavior is constantly growing. The lotus flower, with its ability to self- clean, is commonly described in literature and can be best examples the trend. Researchers started to wonder why the flower behaves in this manner and they decided to study its structure with the use of microscopes. Hence, they could draw the conclusion that the structure is highly hydrophobic, i.e. it maintains water drops on the surface.  Water then collects particles of dust and by flowing down, removes them by flowing down. It means the adhesion forces, those responsible ...

Sniffing in the name of science

Sniffing in the name of science
2021-03-02
The lists of Earth's endangered animals and plants are getting increasingly longer. But in order to stop this trend, we require more information. It is often difficult to find out exactly where the individual species can be found and how their populations are developing. According to a new overview study published in Methods in Ecology and Evolution by Dr Annegret Grimm-Seyfarth from the Helmholtz Centre for Environmental Research (UFZ) and her colleagues, specially trained detection dogs can be indispensable in such cases. With the help of these dogs, the species sought can usually be found faster and more effectively than with other methods. How many otters are there ...

TPU scientists develop efficient method to create high-strength materials for flexible electronics

TPU scientists develop efficient method to create high-strength materials for flexible electronics
2021-03-02
TPU researchers jointly with their colleagues from foreign universities have developed a method that allows for a laser-driven integration of metals into polymers to form electrically conductive composites. The research findings are presented in Ultra-Robust Flexible Electronics by Laser-Driven Polymer-Nanomaterials Integration article Ultra-Robust Flexible Electronics by Laser-Driven Polymer-Nanomaterials Integration, published in Advanced Functional Materials academic journal (Q1, IF 16,836). "Currently developing breakthrough technologies such as the Internet of Things, flexible electronics, brain-computer interfaces will have a great impact on ...

Ultra-fast electron measurement provides important findings for the solar industry

Ultra-fast electron measurement provides important findings for the solar industry
2021-03-02
The key are the ultra-fast flashes of light, with which the team led by Dr. Friedrich Roth works at FLASH in Hamburg, the world's first free-electron laser in the X-ray region. "We took advantage of the special properties of this X-ray source and expanded them with time-resolved X-ray photoemission spectroscopy (TR-XPS). This method is based on the external photoelectric effect, for the explanation of which Albert Einstein received the Nobel Prize in Physics in 1921. "For the first time, we were able to directly analyze the specific charge separation and subsequent processes when light hits a model system such as an organic solar cell. ...

A mechanism by which cells build 'mini-muscles' underneath their nucleus identified

A mechanism by which cells build mini-muscles underneath their nucleus identified
2021-03-02
Research groups at the University of Helsinki uncovered how motor protein myosin, which is responsible for contraction of skeletal muscles, functions also in non-muscle cells to build contractile structures at the inner face of the cell membrane. This is the first time when such 'mini-muscles', also known as stress fibers, have been seen to emerge spontaneously through myosin-driven reorganization of the pre-existing actin filament network in cells. Defects in the assembly of these 'mini-muscles' in cells lead to multiple disorders in humans, and in the most severe cases to cancer progression. A new study published in eLife, drills into the core mechanisms of stress fiber assembly, and reveals how stress fibers can be built directly ...

Mouse sperm generated in rats

Mouse sperm generated in rats
2021-03-02
Okazaki, Japan - Making gametes such as sperm and eggs from pluripotent stem cells, primitive cells that can make all the tissues, greatly contributes to efficient reproduction of livestock animals and future assisted reproductive medicine. Researchers pave the way to achieve this goal using a body of xenogenic animals. The researchers previously developed a method to grow stem cells into an entire organ in the body, so-called blastocyst complementation. The blastocyst is a structure of early embryos. If stem cells are transplanted into the blastocyst obtained from animals that cannot make a certain organ, ...

Gold-phosphorus nanosheets catalyzes nature gas to greener energy selectively

Gold-phosphorus nanosheets catalyzes nature gas to greener energy selectively
2021-03-02
Advances in hydraulic fracturing technology have enabled discovery of large reserves of natural gas which primarily contains methane, which is mainly burned directly and causing global warming potentially. Upgrading methane to greener energy such as methanol through aerobic oxidation is an ideal way to solve the problem and remain 100% atom economy. Yet the difficulties lie in activating methane and preventing methanol from over-oxidation. Methane takes a stable non-polar tetrahedral structure with high dissociation energy of C-H bond, which requires high energy to be activated. ...

Rapid administration of methoxyflurane versus standard care for pain management in the ED

Rapid administration of methoxyflurane versus standard care for pain management in the ED
2021-03-02
Des Plaines, IL - Initial management with inhaled methoxyflurane in the emergency department did not achieve the prespecified substantial reduction in pain, but was associated with clinically significant lower pain scores compared to standard therapy. That is the conclusion of a study titled Rapid Administration of Methoxyflurane to Patients in the Emergency Department (RAMPED) Study: A Randomized Controlled Trial of Methoxyflurane Versus Standard Care that was published recently in the February 2021 issue of Academic Emergency Medicine (AEM), a journal of the Society for Academic Emergency Medicine (SAEM). According to findings of the controlled randomized trial, secondary outcomes included the pain ...

Designing soft materials that mimic biological functions

2021-03-02
Northwestern Engineering researchers have developed a theoretical model to design soft materials that demonstrate autonomous oscillating properties that mimic biological functions. The work could advance the design of responsive materials used to deliver therapeutics as well as for robot-like soft materials that operate autonomously. The design and synthesis of materials with biological functions require a delicate balance between structural form and physiological function. During embryonic development, for instance, flat sheets of embryonic cells morph through a series of folds into intricate three-dimensional structures such as branches, tubes, and furrows. These, in turn, become dynamic, three-dimensional building blocks for organs performing vital functions ...

LAST 30 PRESS RELEASES:

Partial cardiac denervation to prevent postoperative atrial fibrillation after coronary artery bypass grafting

Finerenone in women and men with heart failure with mildly reduced or preserved ejection fraction

Finerenone, serum potassium, and clinical outcomes in heart failure with mildly reduced or preserved ejection fraction

Hormone therapy reshapes the skeleton in transgender individuals who previously blocked puberty

Evaluating performance and agreement of coronary heart disease polygenic risk scores

Heart failure in zero gravity— external constraint and cardiac hemodynamics

Amid record year for dengue infections, new study finds climate change responsible for 19% of today’s rising dengue burden

New study finds air pollution increases inflammation primarily in patients with heart disease

AI finds undiagnosed liver disease in early stages

The American Society of Tropical Medicine and Hygiene and the Bill & Melinda Gates Foundation announce new research fellowship in malaria genomics in honor of professor Dominic Kwiatkowski

Excessive screen time linked to early puberty and accelerated bone growth

First nationwide study discovers link between delayed puberty in boys and increased hospital visits

Traditional Mayan practices have long promoted unique levels of family harmony. But what effect is globalization having?

New microfluidic device reveals how the shape of a tumour can predict a cancer’s aggressiveness

Speech Accessibility Project partners with The Matthew Foundation, Massachusetts Down Syndrome Congress

Mass General Brigham researchers find too much sitting hurts the heart

New study shows how salmonella tricks gut defenses to cause infection

Study challenges assumptions about how tuberculosis bacteria grow

NASA Goddard Lidar team receives Center Innovation Award for Advancements

Can AI improve plant-based meats?

How microbes create the most toxic form of mercury

‘Walk this Way’: FSU researchers’ model explains how ants create trails to multiple food sources

A new CNIC study describes a mechanism whereby cells respond to mechanical signals from their surroundings

Study uncovers earliest evidence of humans using fire to shape the landscape of Tasmania

Researchers uncover Achilles heel of antibiotic-resistant bacteria

Scientists uncover earliest evidence of fire use to manage Tasmanian landscape

Interpreting population mean treatment effects in the Kansas City Cardiomyopathy Questionnaire

Targeting carbohydrate metabolism in colorectal cancer: Synergy of therapies

Stress makes mice’s memories less specific

Research finds no significant negative impact of repealing a Depression-era law allowing companies to pay workers with disabilities below minimum wage

[Press-News.org] Scientists develop elements for the future electronics
Researchers are developing thin films, the elements for biomolecular electronics.